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Working memory (WM) extends the duration over which information is available for
processing. Given its importance in supporting a wide-array of high level cognitive
abilities, uncovering the neural mechanisms that underlie WM has been a primary goal of
neuroscience research over the past century. Here, we critically review what we consider
the two major “arcs” of inquiry, with a specific focus on findings that were theoretically
transformative. For the first arc, we briefly review classic studies that led to the canonical
WM theory that cast the prefrontal cortex (PFC) as a central player utilizing persistent
activity of neurons as a mechanism for memory storage. We then consider recent
challenges to the theory regarding the role of persistent neural activity. The second
arc, which evolved over the last decade, stemmed from sophisticated computational
neuroimaging approaches enabling researchers to decode the contents of WM from
the patterns of neural activity in many parts of the brain including early visual cortex.
We summarize key findings from these studies, their implications for WM theory, and
finally the challenges these findings pose. Our goal in doing so is to identify barriers to
developing a comprehensive theory of WM that will require a unification of these two
“arcs” of research.
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INTRODUCTION

The ability to store information for brief periods of time, so-called working memory (WM), is a
building block for most of our higher cognitive functions, and its dysfunction is at the heart of a
variety of psychiatric and neurologic symptoms. In the history of study into the neural mechanisms
that support WM, an imperative goal of neuroscience, we would argue that there have been
two main arcs. One began almost 50 years ago when Joaquin Fuster first reported that spiking
measured from neurons in the macaque prefrontal cortex (PFC) persisted during a WM delay
(Fuster and Alexander, 1971). Following this seminal publication, many researchers have measured
this persistent activity with the goal of understanding how WM representations are stored by neural
activity (Curtis and D’Esposito, 2003). The vast majority of the work has been focused on the PFC.
The other arc began more recently, over the last decade, but has already made a tremendous impact
on WM theory. Utilizing sophisticated computational neuroimaging approaches (e.g., machine
learning, encoding models, etc.), researchers demonstrated that one can decode the contents of WM
from the patterns of neural activity in early visual cortex (e.g., Harrison and Tong, 2009; Serences
et al., 2009). This was surprising because at the time no existing data, and surely no WM theory,
suggested that sensory cortices played a role in WM storage. The so-called sensory recruitment
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theory of WM emerged from the ever-growing body of research
suggesting a potential role for early visual cortex in visual WM.
To a large extent, these two arcs have existed independently of one
another. Here, we concisely review each arc along with challenges
to the relevant theories, with the goal of identifying barriers
that future research needs to address if an integrative theory of
WM might develop.

NEURAL ACTIVITY PERSISTS IN THE
PREFRONTAL CORTEX

Following a century of studies investigating the effects of
experimental lesions of the non-human primate cortex,
researchers honed in on the principal sulcus in lateral PFC (from
here on we will simply refer to this region as PFC) as a critical
structure supporting WM functions (for a review see Curtis
and D’Esposito, 2004). By 1971, an American lab (Fuster and
Alexander, 1971) and a Japanese lab (Kubota and Niki, 1971)
began recording extracellular neurophysiological signals from
the PFC while macaques performed WM experiments. They
reported that some neurons in the PFC tended to maintain an
elevated rate of spiking, relative to pre-trial baseline firing rates,
during WM retention intervals. Adapting an oculomotor version
of the delayed response task, along with other experimental
refinements, allowed Funahashi, Bruce, and Goldman-Rakic
(Funahashi et al., 1989) to clarify several features of the persistent
activity. First, they demonstrated that persistent activity in PFC
neurons was memory stimulus selective in that, for a given
neuron, it was typically restricted to one or two of the target
positions in the contralateral hemifield (Figure 1A). This meshed
well with a later report that experimental lesions of the PFC
tended to impact memory for targets in the contralesional
hemifield (Funahashi et al., 1993a). Second, they demonstrated
that activity persisted for the duration of the memory delay
(3 or 6 s) consistent with a mechanism that bridged the time
between the past sensory event and the contingent behavior.
Third, they demonstrated that the amplitude of persistent activity
was reduced prior to memory errors. Because these features
align with our notions of memory so closely, persistent activity
was embraced as the neural basis of WM. It is no wonder,
then, that the discovery of persistent activity is considered the
most important scientific observation with regard to the neural
mechanisms of WM. This now classic finding has been replicated
numerous times and has had a tremendous impact on WM
theory and how we study WM experimentally (as reviewed in
Riley and Constantinidis, 2015).

Following these pioneering studies, the experimental
techniques matured and over the next 30 years our knowledge
about the relationships between persistent activity and WM
accumulated. For example, persistent activity in PFC neurons is
not limited to spatial WM. PFC neurons that show preferences
for both simple (e.g., color) and complex (e.g., face) objects
exhibit activity that persists while monkeys maintain these
objects in WM (Quintana et al., 1988; Miller et al., 1996;
Ó Scalaidhe et al., 1999; Fuster et al., 2000; Panichello and
Buschman, 2021). Assuming that stimulus selective persistent

activity is the mechanism by which WM representations are
stored, PFC neurons appear to store any type of stimulus
feature, including the frequency of tactile flutter (Romo et al.,
1999), the direction of dot motion (Zaksas and Pasternak, 2006;
Mendoza-Halliday et al., 2014), sound location (Fuster et al.,
2000; Kikuchi-Yorioka and Sawaguchi, 2000), and audiovisual
macaque vocalizations (Hwang and Romanski, 2015). Moreover,
they encode memory-guided prospective motor plans (Funahashi
et al., 1993b; Takeda and Funahashi, 2002; Markowitz et al., 2015)
and the prospective sensory features of a delayed paired associate
(Rainer et al., 1999; Fuster et al., 2000). Finally, persistent activity
appears to even encode complex task rules and contexts (Asaad
et al., 2000; Wallis et al., 2001), abstract categories (Freedman
et al., 2001), and selective conjunctions of objects and locations
(Rao et al., 1997; Rainer et al., 1998) that cannot be explained by
simpler stimulus or location specific representations.

CANONICAL PFC MICROCIRCUIT
MODEL OF WM

Once the link between persistent activity in the PFC and WM was
firmly established, many focused on determining the properties
of neurons and circuits in the PFC that give rise to memory
selective persistent activity. Pyramidal neurons in layer III of
the PFC make horizontal connections with clusters of other
pyramidal neurons in regular intervals (Levitt et al., 1993; Lund
et al., 1993; Kritzer and Goldman-Rakic, 1995; Figure 1B). V1
neurons have a similar patchy horizontal connectivity (Gilbert
and Wiesel, 1983) and connected neurons are more likely to have
similar orientation tuning (Gilbert and Wiesel, 1989). By logic
of induction, from these observations Goldman-Rakic theorized
that similarly tuned (i.e., for location) pyramidal neurons in
layer III are the source of glutamatergic excitatory recurrent
connections that give rise to persistent activity (Goldman-
Rakic, 1995; Figure 1C). Indeed, the persistent activity of
PFC neurons with similar visuospatial tuning are correlated
(Constantinidis et al., 2001). These excitatory dynamics are
thought to be balanced by closely synchronized fast spiking
inhibitory interneurons (Constantinidis and Goldman-Rakic,
2002), whose lateral inhibition is theorized to additionally
help sculpt the spatial tuning of PFC pyramidal neurons (Rao
et al., 2000). Goldman-Rakic’s theory was formalized into a
computational model that specified how excitatory recurrent
activity, balanced and tuned by inhibition, could give rise to
memory-specific persistent activity within a PFC microcircuit
(Compte et al., 2000; Wang, 2001; Figures 1D,E). This theoretical
model highlighted the importance of the slow kinetics of NMDA
receptors, compared to the faster kinetics of AMPA receptors
(Wang, 1999). Empirical evidence has generally supported many
aspects of the PFC microcircuit model of WM. Persistent
activity depends on glutamatergic synapses on long, thin spines
connecting PFC neurons in layer III (Wang et al., 2011), and
these excitatory currents depend on the slow kinetics of NMDA
receptors to support persistent activity (Wang et al., 2013).
Moreover, the model hypothesizes that small random drifts in
the bumps of activity cause the seemingly random inaccuracies
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FIGURE 1 | The canonical PFC microcircuit model of WM. (A) Neural activity recorded from the principal sulcus in the macaque dorsolateral PFC. Activity persists
during the delay period of memory-guided saccade tasks. The two insets depict a PFC neuron’s response when the memory target appears in and outside of it’s
receptive or “memory” field. Adapted from data from Figure 3 of Funahashi et al. (1989). (B) Tracers injected into deep Layer III of the macaque PFC (green blob)
revealed the extensive lateral connections of pyramidal cells (Levitt et al., 1993). (C) Goldman-Rakic (1995) hypothesized that these connections reflected similarly
tuned pyramidal neurons, whose reciprocal excitatory and inhibitory connections enabled persistent activity. For instance, when remembering a target at 225◦ polar
angle, recurrent excitation among similarly turned pyramidal neurons (purple triangles) maintains the location in WM through persistent activity. Inhibitory interneurons
(red circle) suppress activity in neurons tuned to far away locations (blue triangles). Adapted from Wang et al. (2013). (D) This hypothesis was formulated into a
computational theory in which both recurrent excitatory and inhibitory interactions were modeled (Wang, 2001). (E) This model produces location-specific persistent
activity similar to that observed in recordings of neurons in macaque PFC. Each red dot is a synthetic “spike” in a population of neurons with different location
preferences, where the target is aligned at 0◦. Location is encoded in the population response and decoding involves a read-out of the peak at any given time point,
curve at right. Adapted from Compte et al. (2000).

in memory (Compte et al., 2000); but see (Standage and Paré,
2018). Evidence for this hypothesis exists, as clockwise or
counterclockwise biases in population estimates of delay activity
in macaque PFC neurons predict small angular errors in memory
(Wimmer et al., 2014).

There are also anatomical properties that suggest advantages
that PFC may have in its capacity for WM storage. These slow
NMDA receptors are densely expressed in PFC, especially when
compared to V1 (Wang et al., 2008). Pyramidal neurons in PFC,
again compared to visual cortex, have larger and more complex
dendritic branching with a greater number of spines (Oga et al.,
2017), have more extensive horizontal collaterals in Layers II and
III (Kritzer and Goldman-Rakic, 1995), and are twice as likely to
form reciprocal connections (Wang et al., 2006). Together, the

excitatory connections theorized to form positive feedback loops
to sustain WM representations (Goldman-Rakic, 1995) may be
better supported by these anatomical features in PFC.

TRANSLATING THE PRIMATE PFC
MODEL OF HUMAN WM

The success and impact of any animal model of human cognition
depends on how well it translates to the species it is meant to
model. It is not surprising then, that when brain imaging methods
became widely available, researchers immediately predicted that
indirect measures of neural activity could be used to measure
persistent activity during WM in the homologous part of the
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human PFC. It turned out not to be so easy. The first human
brain imaging study of spatial WM failed to find that blood flow
measured with Positron Emission Tomography (PET) localized
to the dorsolateral PFC (Jonides et al., 1993). Then, the failure of
several studies to find spatial WM-related delay period activity
in the presumed homologous part of human dorsolateral PFC
became the norm rather than the exception (Smith et al., 1996;
Courtney et al., 1998; Zarahn et al., 1999; Rowe et al., 2000).
A subsequent functional magnetic resonance imaging (fMRI)
study from Goldman-Rakic’s own lab succeeded in evoking
dorsolateral PFC activity but only after increasing the WM load
to five items (Leung et al., 2002). At the time it was assumed
that fMRI did not have enough sensitivity to reliably measure
persistent activity associated with maintaining a single item in
WM. However, as we describe next this is unlikely the case and
suggests alternative explanations.

Measuring neural activity with fMRI while humans perform
spatial WM tasks, including memory-guided saccade WM tasks
like those used to initially study the macaque PFC (Funahashi
et al., 1989), we find that fMRI is perfectly sensitive to WM
representations of single items (Curtis et al., 2004; Curtis and
D’Esposito, 2006; Schluppeck et al., 2006; Srimal and Curtis, 2008;
Tark and Curtis, 2009; Jerde et al., 2012; Sprague et al., 2014;
Saber et al., 2015; Rahmati et al., 2020; Hallenbeck et al., in press).
However, in none of the above cited studies did we find evidence
that neural activity persists in the human dorsolateral PFC during
simple spatial WM tasks. On the other hand, in each one of those
studies we found evidence that activity persists, in a variety of
meaningful ways, in the superior spur of the precentral sulcus
(PCS) in the frontal cortex and/or in the posterior part of the
intraparietal sulcus (IPS) (Figure 2A).

On the face of it, these results conflict between the two species.
In the monkey, neurons in dorsolateral PFC show persistent
activity and lesions cause WM impairments. However, in humans
neural activity only persists in the PCS, not in more anterior
parts of the PFC in areas homologous to the macaque principal
sulcus. We generated two hypotheses to explain these conflicting
results based on the impact that lesions to the PFC and PCS
had on WM (Figure 1A). If lesions to the dorsolateral PFC
that spare the PCS cause WM impairments, like they do in
monkeys, this would indicate that fMRI may not be sensitive
enough to measure persistent activity in that part of the brain
(hypothesis 1). On the other hand, if lesions to the PCS, rather
than PFC, cause WM impairments, this would indicate that
the human dorsolateral PFC is not necessary for WM like it
is in the monkey (hypothesis 2). In support of hypothesis 2,
the accuracy of memory-guided saccades was unimpacted by
dorsolateral PFC resections as long as they spared the PCS
(Figure 2B). PCS lesions increased the magnitude of memory
errors largely when the target was in the contralesional hemifield
(Mackey et al., 2016b, 2017; Mackey and Curtis, 2017). In order
to rule out other factors, like reorganization or compensation
in the lesion patients, we repeated the study using transcranial
magnetic stimulation (TMS) applied to the superior PCS and
the intermediate frontal sulcus in the PFC during the memory
delay in a healthy cohort of participants (Mackey et al., 2016b,
2017; Mackey and Curtis, 2017). The TMS results replicated the

patient study; TMS to the sPCS, but not dorsolateral PFC, caused
an increase in memory-guided saccade errors (Figure 2C). These
results are consistent with previous studies that have investigated
the impact of dorsolateral PFC and/or PCS damage on both
spatial and non-spatial forms of WM (D’Esposito and Postle,
1999; Ploner et al., 1999; Postle et al., 2003).

The question of what BOLD is actually measuring is an
important question to consider with respect to persistent activity.
In the highly influential paper by Logothetis et al. (2001), they
reported that BOLD signals in V1 correlated highly with local
field potentials (LFP) (r2 = 0.91). However, what is less often
recalled is that BOLD also correlated with spiking (multiunit
activity (MUA); r2 = 0.73). At longer timescales, when the MUA
returned to pre-stimulus levels (i.e., adapted) in V1 despite the
enduring visual stimulation, the LFP remained above baseline.
Even in these conditions, the BOLD signal correlated with LFP
(r2 = 0.52), and almost as strongly with MUA (r2 = 0.45). Despite
this, many still believe that BOLD signals do not correlate with
spiking, but instead only reflect the local processing of inputs
to the region. What is correct depends on the question. If one
is interested in the physiological coupling itself–specifically, the
neural causes of the BOLD signal–then yes, the major driver
of the BOLD response is afferent processing, which is better
indexed by LFPs. Indeed, if one blocks the usually strong coupling
between MUA and LFP with the use of a serotonin-agonist to
hyperpolarize afferent membranes and thus block output spiking,
the BOLD signal still correlates with LFP, but not MUA (Rauch
et al., 2008). However, without such unnatural pharmacological
interventions both MUA and LFP are both good predictors of
the BOLD signal. Logothetis and Wandell (2004), made this point
clearly in a review of the nature of the BOLD signal:

“In general, LFPs and MUA vary in a similar manner. Hence, at
those sites where the LFPs predicted the BOLD response, the MUA
did too. Across cortical sites there was a tendency for the LFP-based
estimate to perform slightly better than the MUA-based estimate:
The LFP signal predicted 7.6% more of the variance than the MUA.
The difference, although small, was statistically significant. The
larger variability of MUA was mostly attributable to the stronger
adaptation effects observed in this frequency range of the mEFP
[mean extracellular field potential].” (pg. 747).

If the decoupling between BOLD and spiking is most affected
by the adaptation of firing rate, then in the case of WM, one
would predict a particularly strong coupling between BOLD and
the persistent spiking of neurons (which do not show strong
evidence for adaptation during delay periods, e.g., Funahashi
et al., 1989). As a result, regions with persistent spiking activity
should show strong BOLD signals. Thus, if persistent spiking
activity in PFC supports WM in humans, in our view, this
should be readily detectable in the BOLD signal measured with
fMRI. This is true even if the correlation is indirect through
changes in LFP power (Pesaran et al., 2002). Importantly, the
observation of no persistent BOLD activation in PFC regions
during tasks known to recruit persistent spiking in similar regions
of macaques remains meaningful, and is strongly suggestive that
these regions may not play a similar role in humans.
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FIGURE 2 | Translating the canonical model of WM to humans. (A) Rationale and hypotheses of studies of lesion (Mackey et al., 2016b) and TMS perturbation
(Mackey and Curtis, 2017) of human PFC. Neural activity persists in the monkey dlPFC during the retention interval of memory-guided saccade tasks (Funahashi
et al., 1989). Lesions to the monkey dlPFC cause impaired memory-guided saccades, especially when made into the visual field contralateral to the lesion
(Funahashi et al., 1993a). Hypothesis 1: These monkey data predict that lesions to human dlPFC will impair spatial WM performance, including the accuracy of
memory-guided saccades. However, human neuroimaging studies typically find persistent activity or multivoxel decoding of information restricted to the PCS,
posterior to the likely homolog of the monkey principal sulcus in the dlPFC (Courtney et al., 1998; Srimal and Curtis, 2008; Jerde et al., 2012; Sprague et al., 2014;
Hallenbeck et al., in press; Li et al., in press). Hypothesis 2: These data predict that lesions to human PCS, not dlPFC, will impair WM performance. (B) Human PCS
lesions, but not dlPFC lesions, impact spatial WM (Mackey et al., 2016b). Plot in the upper right depicts the mean (SEM) of memory errors assessed by measuring
the accuracy of memory-guided saccades when the memory targets were in the visual hemifield contralateral and ipsilateral to the lesion. The radial histograms
show the spatial distribution of errors highlighting that the PCS lesions primarily impact memory-guided saccades to the contralesional hemifield, as in Funahashi
et al. (1993a). Colors help identify each patient. (C) TMS applied during the middle of the delay period of a memory-guided saccade task to the retinotopically
defined superior PCS, but not to dorsolateral PFC, induces errors in the accuracy of memory-guided saccades (Mackey and Curtis, 2017). Plot in the lower right
depicts the mean (SEM) of memory errors assessed by measuring the accuracy of memory-guided saccades when the memory targets were in the visual hemifield
contralateral and ipsilateral to the hemisphere in which TMS was applied. UVM, upper vertical meridian; LHM, left horizontal meridian; LVM, lower vertical meridian.
*Denotes statistically significant effect.

Now we return to trying to understand the discrepancy in
WM findings between the human and monkey studies, and in
doing so we need to consider a variety of possible explanations.
First, a single item WM task may be too easy for humans
relative to monkeys. Similar to the load argument discussed
above (Leung et al., 2002), perhaps increasing the number of
items increases the difficulty and thus recruits the human PFC.
Nonetheless, the canonical WM theory does not specify that
the dorsolateral PFC is only needed when the WM system is
taxed with a challenging task. Moreover, other control processes
such as reorganization and compression are necessary when
one must maintain a number of items in WM (Rypma et al.,
2002), especially when these approach or surpass capacity limits
(Cowan, 2001). Second, perhaps a poor understanding of the
homologies in either brain structure or function between the
two species is more complicated than thought (Petrides et al.,
2012). Third, the percentage of neurons in the macaque principal
sulcus that show delay period activity is low (∼10%) relative to
the percentage of neurons in the frontal eye field (FEF) (∼%50),
located down in the anterior bank of the arcuate sulcus, and
the lateral intraparietal (LIP) area (∼%50). Due to very large
receptive fields (RFs), the tuning for location during the memory
delay is coarse in the PFC relative to the FEF and LIP (Mohler
et al., 1973; Blatt et al., 1990; Hamed et al., 2001). Plus, the
horizontally connected clusters of pyramidal neurons in layer

III of the PFC form stripes that are spaced 0.2–0.8 mm apart
(Kritzer and Goldman-Rakic, 1995). Perhaps fMRI is insensitive
because this spatial separation dilutes over voxels the signal from
an already small percentage of poorly tuned neurons persisting
in the PFC. Fourth, there are surely true differences between the
two species that cannot be attributed to the methods with which
neural activity is measured. If we were considering rodent models
of WM (e.g., Goard et al., 2016; Inagaki et al., 2019), we would
be less bothered by possible mismatches in the exact brain areas,
and would instead focus on the advantages of the animal model
to learn about the precise neural mechanisms. One potential
implication is that the mechanisms described in the microcircuit
model of WM might be more applicable to cortical areas other
than the human PFC. Indeed, lesions to the macaque FEF and
LIP, as well as homologous areas in the human brain both impair
WM performance (Dias and Segraves, 1999; Gaymard et al., 1999;
Li et al., 1999; Ploner et al., 1999; Mackey et al., 2016a,b; Mackey
and Curtis, 2017).

NEURAL ACTIVITY PERSISTS BEYOND
PFC

The dorsolateral PFC is not the only brain area housing
neurons that persist during WM (Leavitt et al., 2017).
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Funahashi et al. (1989) also reported that neurons in the FEF
showed spatially tuned persistent activity. As mentioned above,
persistent activity is more common among FEF neurons than
PFC, more robust, and more spatially selective (Goldberg and
Bruce, 1985; Sommer and Wurtz, 2001; Merrikhi et al., 2017;
Hart and Huk, 2020). Activity persists during WM tasks in several
other frontal areas including the dorsal premotor cortex (PMD)
(Rossi-Pool et al., 2017; Bastos et al., 2018), the supplementary eye
fields (SEFs) (Shichinohe et al., 2009; Fukushima et al., 2011), the
anterior cingulate cortex (ACC) (Kamiński et al., 2017), and even
the orbitofrontal cortex (OFC) (Ichihara-Takeda and Funahashi,
2007). Moreover, neurons in LIP and 7a also show spatially
selective and robust persistent activity (Gnadt and Andersen,
1988; Barash et al., 1991; Constantinidis and Steinmetz, 1996;
Chafee and Goldman-Rakic, 1998; Pesaran et al., 2002; Hart
and Huk, 2020). In the temporal lobe, WM selective persistent
activity has been reported in neurons in monkey inferotemporal
(IT) cortex (Fuster and Jervey, 1981; Miyashita and Chang,
1988; Miller et al., 1993; Chelazzi et al., 1998) and even in
hippocampus and nearby entorhinal/perirhinal cortex (Miller
and Desimone, 1994; Suzuki et al., 1997; Wirth et al., 2003).
Evidence also exists that persistent neuronal activity carries
sensory information about object identity in V4 (Hayden and
Gallant, 2013) and motion in area MT (Bisley et al., 2004).
However, these results are controversial (Pasternak and Greenlee,
2005; Leavitt et al., 2017) as other studies have reported an
absence of persistent activity among neurons in MT coding
for the remembered motion direction (Mendoza-Halliday et al.,
2014) and the persistent activity may be limited to the early and
late phases of the delay (Bisley et al., 2004). Whether activity in
individual neurons persists in these sensory areas may depend
on the type of representational format an animal might be using
to store the memory as opposed to the representation formed
during perception. For instance, it is unlikely that memory for dot
motion is a replay of hundreds of dots moving over time. Perhaps,
that temporally evolving percept is compressed or recoded into
something like a single directional vector that does not drive
MT. Remarkably and surprising to many neuroscientists, even
neurons in V1 show activity which persists during WM delays
(Supèr et al., 2001; van Kerkoerle et al., 2017). Finally, neurons
in subcortical areas like the superior colliculus (SC) (Shen et al.,
2011; Dash et al., 2015; Sadeh et al., 2018) and mediodorsal
thalamus (Funahashi, 2013) are spatially tuned and carry location
information during WM delay periods. The point we are trying
to make in this section is that the presumed mechanism that
supports WM–memoranda-specific persistent activity–is not
exclusively localized to the dorsolateral PFC. Rather it appears
to be a mechanism used by many parts of the brain to encode
enduring representations useful for memory-guided decisions.

In humans, measuring delay period activity with fMRI
BOLD supports these non-human primate reports in just how
widely distributed persistent activity appears to be during WM.
There have been a number of reviews recently of human
neuroimaging studies of WM (e.g., Sreenivasan et al., 2014;
D’Esposito and Postle, 2015; Christophel et al., 2017; Sreenivasan
and D’Esposito, 2019) and thus we will instead focus on
instructive examples of persistent activity measured in humans

with fMRI. Moreover, we focus on spatial WM because of its
widespread use in both species and the ease with which neural
encoding properties can be measured in both species. In many
of the monkey electrophysiological studies reviewed above, an
important first step involved characterizing each neuron’s RF
or its preferred stimulus feature. This then allowed researchers
to compare memory responses between stimuli placed within
and outside of each neuron’s RF (or compare between preferred
and non-preferred stimuli). Utilizing the same logic, advances
in population receptive field (pRF) mapping (Dumoulin and
Wandell, 2008; Wandell and Winawer, 2015; Mackey et al.,
2017) allow researchers to compare BOLD estimates of persistent
activity between trials in which the memoranda fall within and
outside of a voxel’s pRF. In Figure 3, the time courses of BOLD
activity during a memory-guided saccade task are shown for
ten visual field maps (Rahmati et al., 2020; Hallenbeck et al.,
in press). Each visual field map contains either an upright or
inverted representation of the contralateral visual field. Within
each map, the location and size of the pRF of each voxel in these
maps can be estimated using non-linear optimization techniques.
Then, averaging BOLD signal over trials can be performed in
a principled way according to the match between voxels’ pRF
positions and the locations of the memorized targets. Overall,
activity persists during the delay period in almost all of these
maps. Moreover, the amplitude of BOLD activity is generally
greater among voxels with pRFs matching the target, compared
to voxels with pRFs 180◦ away from the target (on the opposite
side of fixation).

Based on these data, two major gradients can be seen. One, the
overall amplitude of persistent activity increases moving up the
visual hierarchy from visual cortex to parietal cortex to frontal
cortex. Two, the spatial selectivity (difference between when
the target is in or out of the voxel’s pRF) generally decreases
up that same hierarchy. Even within the parietal cortex, we
can see both of these gradients from IPS0 to IPS3. Of special
interest, many neuroimaging studies have failed to find persistent
activity in V1 [or in early visual cortex for that matter; e.g.,
(Ester et al., 2009; Harrison and Tong, 2009; Offen et al., 2009;
Serences et al., 2009; Riggall and Postle, 2012; Albers et al., 2013)].
These studies, however, typically averaged over all voxels in V1,
likely missing the more localized activity that persists associated
with a given remembered stimulus. Note how the voxels in
V1 with pRFs overlapping the small memory target showed a
brief transient response time-locked to the target stimulus, but
activation does not remain above the pre-trial baseline for the
entire delay period. On the one hand, V1 does not meet the
strict definition of persistent activity. On the other hand, if one
considers the relationship between encoding and decoding from
neural populations, then it does meet the definition of persistent
activity. Namely, the WM representation is clearly encoded in the
population as evident by the difference between the two time-
courses. Moreover, the same decoder applied to read-out the
population response would recover the target location despite
the average signal dipping back down to pre-trial levels. We
reported the same pattern in V1 previously even on trials in
which the location of the visual target was different from the
location of the memory-guided saccade, using an antisaccade
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FIGURE 3 | Stimulus-selective persistent activity across the human brain
measured with fMRI. BOLD activity persists during the retention interval of
memory-guided saccade tasks in many cortical and subcortical brain areas
(Hallenbeck et al., in press). Each region-of-interest was defined using
modified pRF mapping procedures (Mackey et al., 2017; Rahmati et al.,
2020). Solid lines are the average BOLD signal from trials in which the
memory target fell within the pRF of voxels. Dashed lines represent the
averaged signal from trials in which the target was 180◦ away from the target.
Error bands are SEM. Gray vertical lines represent the onset of a brief visual
target and the end of the retention interval. Notice how the general amplitude
of persistent activity increases from early visual cortex to parietal cortex to
frontal cortex, but the spatial selectivity generally decreases. Moreover, BOLD
activity persists in retinotopically organized human superior colliculus (SC)
(Mackey et al., 2017; Rahmati et al., 2020).

procedure (Saber et al., 2015), indicating that the response is
memory related and not solely a residual BOLD response due
to the visual transient. These advances allow for promising and
more direct comparisons between monkey electrophysiology and
human neuroimaging.

DECODING WM CONTENTS FROM
POPULATION-LEVEL ACTIVATION
PATTERNS

As reviewed above in the section on translational studies,
attempts to identify persistent activity in human dorsolateral PFC
during WM tasks that require simple maintenance have largely
been unsuccessful. However, these studies typically leveraged

mass univariate analysis approaches which average responses
across all trials in the experiment and over neighboring voxels by
way of smoothing. As a result, these analyses effectively focus on
the similarities in fMRI activation across all unique remembered
stimuli. That is–to isolate activation related to the maintenance
of information over the delay period, trials corresponding to all
possible WM contents are combined. Such averaging necessarily
masks important differences in activation associated with specific
types of stimuli–for example, the particular location, orientation,
or color held in WM.

Beginning at the turn of the century, human neuroimaging
researchers began considering the possibility that patterns
of brain activation measured with fMRI could discriminate
between different stimulus or task conditions, rather than only
considering elevated or suppressed average activation (Haxby
et al., 2001; Norman et al., 2006). These methods primarily
involve “decoding” which of several stimuli was present using
machine learning tools, such as support vector machines. When
these methods were turned to the early visual system, they
demonstrated a remarkable ability to decode which orientation
was viewed based on visual cortex activation patterns (Haynes
and Rees, 2005; Kamitani and Tong, 2005). This was a surprising
feat–the anatomical organization of orientation selectivity in
the early visual system was thought to be too fine for study
with the relatively coarse spatial resolution of fMRI (on the
order of 2–3 mm per voxel). However, because the coarse
sampling of the fine orientation columns is imperfect and uneven,
the observed pattern of activation differed across stimulus
orientations, enabling the decoding algorithm to detect these
subtle differences and accurately decode which orientation was
viewed (Boynton, 2005; Swisher et al., 2010). It should be noted
that there exists considerable skepticism about the exact signals
driving successful orientation decoding performance in these
studies (Freeman et al., 2011, 2013; Alink et al., 2013; Carlson,
2014; Maloney, 2015; Pratte et al., 2016; Roth et al., 2018).
Regardless of the source of the signals, it remains possible to
recover distinctions in brain activation patterns associated with
visual stimulus features.

Soon thereafter, these methods were applied to WM: Harrison
and Tong (2009) and Serences et al. (2009) each reported
success applying similar decoding techniques to visual cortex
fMRI activation patterns measured during the delay-period
of WM tasks. In each case, the authors demonstrated that
only remembered information could be decoded, and non-
remembered information [e.g., a discarded feature (Serences
et al., 2009), or a discarded stimulus (Harrison and Tong, 2009)]
was not maintained, demonstrating that these results cannot
only be due to lingering sensory-evoked activation present in
the slow hemodynamic signals measured with fMRI. This pair of
studies offered convincing evidence for an important role of early
sensory regions in supporting WM representations, especially
when the features to be maintained are well-represented within
those regions. This sensory recruitment model of WM posits
that the previously identified sustained delay-period activation
observed in association cortex acts to coordinate stimulus-
specific representations in sensory cortex (Curtis and D’Esposito,
2003; Postle, 2006; D’Esposito and Postle, 2015; Serences, 2016).
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In the decade since, dozens of studies have applied similar
methods to decode visual stimulus features such as orientation,
motion direction, color, spatial position, and the identity of
a spatial pattern from brain activation patterns measured
from striate and extrastriate visual cortex (Christophel et al.,
2017). Moreover, modified versions of these decoding methods,
including cvMANOVA (Allefeld and Haynes, 2014; Christophel
et al., 2018a), inverted encoding models (IEMs) (Figure 4A;
Ester et al., 2013; Sprague et al., 2014), and Bayesian decoding
methods (van Bergen et al., 2015; van Bergen and Jehee,
2018, 2021; Brissenden et al., 2021; Li et al., in press) have
increasingly improved the resolution and sensitivity of these
methods to differences between conditions, and, ultimately,
between individual trials. These new methods have revealed
feature-selective representations broadly across visual, parietal,
and frontal cortex (Christophel et al., 2012, 2018a,b; Jerde et al.,
2012; Christophel and Haynes, 2014; Sprague et al., 2014; Ester
et al., 2015; Yu and Shim, 2017; Rahmati et al., 2018; Li et al., in
press), along with subcortical regions including the SC (Rahmati
et al., 2020) and cerebellum (Brissenden et al., 2021). In human
neuroimaging, evidence for stimulus-selective persistent activity
abounds throughout the brain (Figure 4B). One challenge is
to understand why there are so many WM representations
distributed across the cortex. Perhaps they contain different
formats of WM useful for various sensory, motor, and cognitive
functions. Conversely, they might reflect some representation
that is shared with WM. For instance, we found that decoders
trained to predict spatial locations during the delay of a spatial
WM cross-predicted the locations on the other tasks (e.g., covert
attention and saccade planning) in sPCS and in IPS2 (Jerde
et al., 2012). This suggested that the delay period patterns of
activity may be interchangeable across spatial WM, attention,
and saccade planning, and may reflect a common representation
akin to attentional priority (Serences and Yantis, 2004; Fecteau
and Munoz, 2006; Zelinsky and Bisley, 2015). Therefore, future
research needs to investigate what types of information are stored
in persistent activity.

Interestingly, in many cases, when sustained delay-period
activation is compared directly against stimulus-selective
activation patterns, complementary results are found (Postle,
2015). As an example, Riggall and Postle (2012) compared
univariate delay-period activation and decoded information
content for regions responsive to visual stimuli and those
with elevated responses during the delay period of a WM
task. In the stimulus-responsive regions (which were primarily
in extrastriate visual cortex), a decoding algorithm was able
to successfully recover the direction of motion remembered
by the participants, but these regions did not show elevated
delay-period activation. Conversely, in delay period-responsive
regions (which were primarily in the IPS dorsal frontal cortex),
the authors could not decode the remembered stimulus value,
but did observe sustained delay-period activation spanning
the sample and the probe stimulus. In a subsequent study
in which WM load was additionally manipulated, sustained
delay-period activation in frontal and parietal regions was shown
to increase as WM load increased from 1 to 3 items, while a
similar change in average activation was not observed in sensory

FIGURE 4 | Decoding methods reveal stimulus-selective persistent activity
across cortical and subcortical regions in the human brain. (A) Recent studies
have employed “IEMs,” which model the activation of each voxel as a
weighted combination of neural information channels (Brouwer and Heeger,
2009; Ester et al., 2013; Sprague et al., 2018). Applying this method results in
reconstructed channel response profiles for each timepoint of each trial. When
a measured activation pattern contains a representation of the remembered
information, these reconstructed channel response profiles peak at the
corresponding feature value. Right: single example trial illustrating a persistent
representation of the remembered location on that trial based on activation
patterns in V3AB (orange triangle indicates onset of delay period and
remembered feature value). (B) When applied to activation patterns in
retinotopic cortical regions and the superior colliculus while participants
perform a memory-guided saccade task, representations of remembered
positions are universally recovered. For each ROI, we show a timecourse of
reconstructed representations (each row is a single timepoint; average of
reconstructions for all experimental trials aligned to the remembered location),

(Continued)
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FIGURE 4 | Continued
along with the average channel response profile over the final 1.5 s of the
delay period (red line). Data adapted from Hallenbeck et al. (in press) (A,B; all
ROIs except SC) and Rahmati et al. (2020) (B; SC). This Figure depicts the
same data shown in Figure 3 analyzed in a different way.

regions (Emrich et al., 2013). However, the authors could reliably
decode the remembered stimuli from activation patterns in
sensory regions, with accuracy decreasing as WM load increased.
Once again, this has been taken to suggest that regions showing
elevated delay-period activity may not be those which represent
the WM content itself, and that instead there may be a division of
labor between frontal and parietal regions which help coordinate
WM representations and sensory regions which encode stimulus
values themselves (Postle, 2015; Postle and Yu, 2020).

However, when interpreting results from these decoding
studies, it is critical to consider how these various algorithms
operate to discriminate between remembered visual stimuli. The
key feature of any decoding algorithm is that it identifies a
reliable difference between activation patterns associated with
different modeled stimulus values. While different approaches
use different assumptions about the structure of these activation
patterns and their noise covariance, this core feature remains.
Accordingly, if a decoder can reliably pick up on differences
between activation patterns within a region associated with
different stimulus values, this necessarily means that some
neurons (or, at least, signals resulting from neural activity) are
more active than others in a reliable way. That is–the decoders
aren’t magic–they’re just exploiting the structure of signals
measured from neural tissue to optimally extract activation
associated with different stimulus values. And, importantly,
some stimulus values result in increased activation in some
measured units, while other stimulus values result in increased
activation in other measured units. As a trivial example, one could
build a visual stimulus decoder based on a machine learning
algorithm (e.g., support vector machines) to decode which side
of the screen is stimulated by a large flickering checkerboard–a
stimulus that is well-understood to evoke extremely strong and
reliable fMRI signals in contralateral visual cortex. The decoder
would perform extremely well–likely approaching 100% correct
decoding performance. While in this case it wouldn’t be necessary
to apply the decoding algorithm to show that primary visual
cortex encodes the retinotopic location of a stimulus, because a
simple fMRI contrast would reveal strong evidence for such a
result, this example remains illustrative: the decoder would be
basing its judgment on localized increases in activation within a
subset of the population of voxels.

When such an analysis is applied to data acquired during a
memory-guided saccade task analogous to that used in macaques,
greater activation is measured in voxels with spatial RFs near the
remembered location as compared to those voxels with spatial
RFs farther away (Figure 3; Saber et al., 2015; Hallenbeck et al.,
in press). Moreover, this holds for features like orientation:
recent studies which have instead attempted to “localize” voxels
preferring one or another orientation and directly compare
activation between these subpopulations support this notion:

voxels labeled with the orientation remembered on a trial show
elevated activation compared with those labeled with the non-
remembered orientation (Lawrence et al., 2018). These results
track with those observed in the classical studies of macaque
DLPFC which show elevated neural firing for neurons which
prefer the remembered location as compared to those with more
distal preferences (Funahashi et al., 1989).

In our view, the ability to accurately decode which of
several stimuli is held in WM is consistent with the definition
of persistent activity: these results are driven (in large part)
by different activity levels between different stimulus values
during a WM delay period. Thus, decoding studies which
observe stimulus-selective activation patterns in different cortical
and subcortical brain regions should be considered to provide
support for stimulus-selective persistent activity. Decoding of
WM content and elevated delay-period activation may, in many
cases, be considered two sides of the same coin (Figure 3 vs.
Figure 4B). Recent advances in decoding methods described
above (IEM, cvMANOVA, and Bayesian generative models) have
further extended the set of regions from which WM content can
be decoded. Ester et al. (2015) and Yu and Shim (2017) applied
IEMs to decode orientation and color from several parietal
and prefrontal regions, and Christophel et al. (2018b) applied
a non-parametric decoder based on a multivariate ANOVA to
decode remembered orientation from the same regions from a
large sample of fMRI participants (n = 87). Where sustained
delay-period activation is found in humans, successful decoding
of WM content seems to soon follow as the capabilities of
methods advance.

FURTHER CHALLENGES TO THE
CANONICAL PFC MODEL OF WM

So far we have described several findings that challenge the
canonical WM model. In humans, simple WM does not depend
on the dorsolateral PFC. Additionally, the persistent activity of
neurons in PFC that sits at the heart of the canonical WM model
is observed in many other brain regions, including early visual
cortex. Together, these findings suggest that perhaps theories
have tended to overemphasize the unique importance of PFC for
WM. Additionally, further challenges have recently arisen to the
very nature of what role persistent activity plays in WM.

Is Persistent Activity in PFC an Artifact of
Averaging?
First, some have questioned whether persistent activity in PFC
neurons is an artifact of averaging over trials (Shafi et al.,
2007; Stokes and Spaak, 2016; Spaak et al., 2017). Similarly, the
spiking activity of single PFC neurons might be best described
as idiosyncratic bursts rather than persistent, and perhaps PFC
activity is better characterized as “bubbles” of oscillations in LFP
(Lundqvist et al., 2016, 2018). However, even if one accepts this
to be the case, the original theoretical model does not need to
be adjusted. The canonical model put forth by Goldman-Rakic
(1995) and its later formalization as a computational model
(Compte et al., 2000) never specified that WM representations
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were stored by the persistent activity of single neurons. On the
contrary, even the earliest versions of the model were inspired
by the anatomy of layer III PFC neurons that were proposed to
be clustered in pools of similarly tuned neurons with recurrent
excitatory connections. Furthermore, the computational model
clearly encodes WM representations through the overall activity
of a population of neurons where the bump of activity could
result from numerous and changing configurations of neurons.
Perhaps the fact that the evidence for the theory took the form
of averaged recordings of single neurons may have confused the
issue. Nonetheless, the dynamics of single neurons involved in
the population code deserves further investigation both at the
empirical and theoretical level.

Dynamic Codes for WM Content
Second, some have questioned the temporal stability of WM
representations encoded by the delay period activity of PFC
neurons (Parthasarathy et al., 2017, 2019; Spaak et al., 2017;
Cavanagh et al., 2018; Wasmuht et al., 2018). Based on
analyses comparing the activity of groups of neurons across
timepoints within trials, these studies have concluded that in
some circumstances the population activity of PFC neurons that
code for WM representations dynamically changes over time.
This could be a real challenge to the canonical model of WM
because this mechanism is at odds with a stable fixed activity
pattern linking neuronal turning preferences with features stored
in WM. Specifically, if WM representations were primarily
dynamic, a downstream area would have to know about and
track the dynamics of each neuron’s encoding properties (its
mnemonic tuning function as it unfolds over the trial) in order
to read out the represented feature value from the population
response at a given timepoint.

However, recent theoretical and empirical demonstrations
have mitigated these concerns. Even when activity patterns are
somewhat dynamic, such that the correlation between activity
patterns is lower for points further separated in time than
for points nearer in time, the population can be shown to
have the same information content. Specifically, Murray et al.
(2017) demonstrated that dynamic activity patterns that are
occasionally observed in PFC exist within a “stable subspace” of
the full population activity space, such that a downstream region
could apply a fixed linear readout to accurately recover WM
information throughout the delay period. Thus, at least in some
cases, dynamic codes may only appear this way on the surface
(Murray et al., 2017; Parthasarathy et al., 2019).

While there certainly does exist ample evidence that dynamic
responses at the single-unit level can be observed, and that they
can in some cases support a stable population-level neural code,
it is critical to note that these studies do not negate the existence
nor importance of other stable coding mechanisms, some of
which are observed in the same studies. For example, it has
been shown that neurons with dynamic responses and those with
stable responses coexist in PFC, and their response dynamics
can be well-predicted by their intrinsic “time constant” [their
autocorrelation function measured from inter-trial intervals;
(Wasmuht et al., 2018)]. That is–nearby neurons in the same
brain region can either show evidence for dynamic coding

or stable coding. In another study, macaques performed an
oculomotor delayed response task with an intervening irrelevant
distractor stimulus. Activity patterns measured from LPFC
“morphed” following the distractor, but patterns measured from
the FEF of the same animals did not show evidence for such
dynamic morphing (Parthasarathy et al., 2017). These results
show that even when dynamic codes are observed, stable
subspaces (consistent with a fixed readout rule) can account
for a large amount of the response dynamics, and moreover,
that stable coding is simultaneously observed in other neurons
and/or brain regions.

Mixed Selectivity in PFC
Third, PFC neurons appear to have mixed selectivity as they can
change their responsiveness to the same stimulus or behavioral
response depending on subtle contextual changes within a task
(Sigala et al., 2008; Machens et al., 2010; Mante et al., 2013; Rigotti
et al., 2013). This could have several implications, including that
the population response does not encode straightforward task
variables, or that it encodes some latent variables that have yet
to be discovered, or that it is dynamic over time at the timescale
of the recording session. Nonetheless, there are some advantages
to mixed selectivity. For example, the idea that the PFC can
store any type of feature in WM implies that the entire manifold
of encoding mechanisms housed in our sensory cortices might
need to be duplicated just for short term storage, which seems
highly inefficient at best. Mixed selectivity could vastly increase
the encoding capacity of a given population (Rigotti et al., 2013).
However, incorporating this concept into the canonical PFC
model of WM would require altering the theory in ways that
approach the way in which the hippocampus is thought to use
mixed selectivity and sparse coding for long-term memory (Rolls
and Treves, 1990; McClelland et al., 1995). Moreover, perhaps we
have yet to discover the mechanisms by which the population
response in PFC is demixed when it is readout by other brain
areas (Machens, 2010).

“Activity-Silent” WM Representations
Fourth, metabolically economical models propose that persistent
spiking may induce fast-timescale synaptic changes that encode
stimulus properties that can be later retrieved efficiently via
stimulus-agnostic “pinging” of the network (Mongillo et al.,
2008; Stokes et al., 2013; Rose et al., 2016; Wolff et al., 2017),
instructive cues (Lewis-Peacock et al., 2012; Sprague et al., 2016;
LaRocque et al., 2017; Lorenc et al., 2020), and/or spontaneous
internal neural reactivation signals (Lundqvist et al., 2016, 2018).
In the empirical reports, decoding performance reliably drops
around chance levels at one point in the trial, but a subsequent
visual stimulus (Wolff et al., 2015, 2017, 2020a,b), TMS pulse
(Rose et al., 2016), or task instruction (Lewis-Peacock et al.,
2012; Sprague et al., 2016; LaRocque et al., 2017) results in a
“reactivation” of an otherwise “latent” WM representation. This
negative evidence, in the form of poor or at-chance decoding
performance prior to reactivation, has been used to suggest that
currently irrelevant information in WM is not maintained in an
active state accessible to the measured neural signals fed into the
decoding algorithm.
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However, these studies additionally cannot rule out a key role
for persistent activity in supporting WM behavior. When larger
sample sizes and more sensitive analysis techniques are applied,
there appears to be some positive evidence for representations
of irrelevant WM information (Christophel et al., 2018b;
Iamshchinina et al., 2021). While these positive results do not
invalidate the previous negative observations, it does suggest that
it can be possible–with a sufficient sample size–to find evidence
for WM representations that elude studies with smaller sample
sizes. The studies which have “pinged” human participants with
irrelevant visual stimuli or TMS pulses can also not conclusively
demonstrate that there existed no information prior to the
reactivation stimulus. While the information may not have been
accessible with EEG or MEG measurements, it may have existed
as spontaneous oscillations in the electrophysiological recordings
(LaRocque et al., 2013; Foster et al., 2016). A recent reanalysis
of the data shown in Wolff et al. (2017) suggests this latter
possibility (Barbosa et al., 2021). Finally, modeling has shown
that observations of increased information content in IEM-based
stimulus reconstructions following a task cue (Sprague et al.,
2016) are not diagnostic of a transition from a passive to an active
code (Schneegans and Bays, 2017). While this study (Sprague
et al., 2016) found an enhancement in the decodable information
about remembered spatial position following an informative cue,
it remains the case that weak information may have been present
prior to the cue, but was inaccessible to the fMRI signal and/or
decoding algorithm employed (e.g., Christophel et al., 2018b).

Distractors Impact WM Representations
in Sensory Regions
Cognitive theories about the nature of WM representations have
long been informed by behavioral studies of the distracting
effects of material presented during WM retention intervals
(Baddeley, 1986). Intervening information is more disruptive
when its features match the contents of WM. For instance,
intervening phonological but not visual information impairs
one’s ability to maintain visually presented strings of letters,
suggesting an important role of articulatory processes for
items that are verbalizable (Logie et al., 1990). Similarly,
intervening visuospatial processing and oculomotion selectively
impacts spatial WM (Postle et al., 2006). In general, many
conclusions about the formats of WM representations depend
on the logic that the effectiveness of distraction depends on
how well the representational formats of the distractor and
memoranda are matched. Neuroscientific studies have also
relied on a similar logic, assuming that the competition or
interaction between the neural representations of the memoranda
and the intervening distractor disrupts memory. As reviewed
above, early electrophysiology and neuroimaging studies focused
primarily on the importance of persistent activity in the PFC.
Until recently, the potential importance of posterior cortical
areas in WM had been largely neglected. Indeed, neural
activity in monkey inferotemporal cortex is less robust during
memory delays and the selectivity of activity appears to be
disrupted by intervening distractors, while PFC representations
appear resistant to distraction (Miller et al., 1996). Similarly,

memoranda-specific delay period activity of neurons in the
monkey PFC resists the effect of distractors, especially when
compared to neurons in posterior parietal cortex (di Pellegrino
and Wise, 1993; Constantinidis and Steinmetz, 1996; Suzuki and
Gottlieb, 2013). Inferences stemming from the underlying logic of
these distractor studies imply that the PFC, rather than posterior
cortical areas, is critical for WM storage.

Recent human neuroimaging studies have further addressed
this issue using various decoding methods, with a primary focus
on whether information about remembered features can be found
in visual cortex in the presence of an intervening distracting
stimulus. Bettencourt and Xu (2016) decoded orientations held
in visual WM using activation patterns in visual and parietal
cortex on trials with and without distracting visual stimuli
during the delay period (faces and gazebos). When it was
predictable whether a distractor would or would not appear on
a given trial, remembered orientations could not be decoded
based on visual cortex activation patterns, but decoding from
parietal cortex was successful. However, when distractor presence
was unpredictable, both visual and parietal cortex represented
remembered orientations during both distractor-present and -
absent trials. Several subsequent commentaries (Ester et al.,
2016; Gayet et al., 2018; Scimeca et al., 2018; Postle and Yu,
2020; Lorenc and Sreenivasan, 2021) and empirical reports
(Lorenc et al., 2018; Rademaker et al., 2019; Hallenbeck et al.,
in press) contested the theoretical importance of the null
decoding performance in visual cortex for predictable distractors
observed in Bettencourt and Xu (2016). The empirical studies
largely replicated the finding in Bettencourt and Xu (2016)
that activation patterns in parietal cortex contained information
about WM content regardless of whether or not a distractor was
present during the delay. However, decoded activation patterns
in visual cortex do seem to depend on distractor presence,
and alterations in these representations predict behavioral errors
(Lorenc et al., 2018; Rademaker et al., 2019; Iamshchinina et al.,
2021; Hallenbeck et al., in press). Thus, persistent activity, as
indexed by successful decoding of remembered information,
survives visual distraction in many regions, and the impact
of distraction on measured persistent activity in visual cortex
is reflected in behavioral performance errors. These results
across several studies suggest a critical role for stimulus-
selective persistent activity in sensory cortex–it is often observed
during delay periods, it appears unaffected by distractors when
behavioral performance remains intact, and changes in persistent
activity are reflected in changes in behavioral responses.

CONCLUDING REMARKS: PERSISTENT
ACTIVITY PERSISTS

Remarkably, for the past 50 years researchers studying the
mechanisms of WM have used a variety of tools to characterize
persistent activity across numerous types of memory tasks, across
species, and across brain areas. It continues to stand as the central
neural mechanism that supports WM. We have seen two arcs
of research into persistent activity. One began in the front of
the brain with single neuron recordings from the macaque PFC
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and led to what we have referred to as a canonical model of
WM–a rich and mechanistically explicit computational model
based in physiology and anatomy. The other began in the back
of the brain using sophisticated machine learning algorithms
that could precisely decode the contents of WM based on the
patterns of neural activity in the human visual system. Here, we
argue that such decoding is itself a manifestation of stimulus-
selective persistent activity, just at a smaller scale than entire
brain regions. Accordingly, persistent activity can be inferred
not just from sustained elevated spiking of neurons, but from
population level activity of fMRI BOLD signals sculpted by the
content of memory.

The recent challenges to the canonical model include the
various coding schemes (e.g., dynamic coding, mixed selectivity)
and concerns about the evidence for persistent activity itself (e.g.,
artifacts, activity silent mechanisms). Another implicit challenge
revolves around how “PFC-centric” the field has been when
considering the neural mechanisms of WM. For instance, even
if we accept each of these criticisms, the canonical model in its
simplest form would need no revision if it was merely applied
to brain areas other than the PFC. For instance, translating
the classic findings of Funahashi–firing of neurons in macaque
dorsolateral PFC persist over delays (Funahashi et al., 1989) and
damage to this region impacts WM (Funahashi et al., 1993a)–to
humans only requires shifting the locus from dorsolateral PFC
to a brain region a bit more posterior in the precentral/arcuate
sulcus (Mackey et al., 2016b). The various complexities with the
types of coding and reliability of persistent activity in monkey
PFC all disappear if the canonical model is instead applied
to monkey areas like FEF and LIP (Hart and Huk, 2020).
In those areas, single neurons clearly persist on single trials
and the neurons form populations that represent WM features
exactly as modeled (Wang, 2001) without the complexity of
mixed selectivity and dynamic coding. Perhaps while we attempt
to reconcile new discoveries about the PFC, we do not need
to update our canonical model of WM. Overwhelmingly, the
evidence indicates that simple, stable persistent activity among
neurons in stimulus selective populations is one fundamental
mechanism by which we maintain WM representations.

Moving forward, there are a number of questions that we
instead need to address. Most relevant is: what, then, is the role
of the dorsolateral PFC? Note that persistent activity is simply
an observation and is not synonymous with WM maintenance
(Curtis and Lee, 2010). Perhaps persistent activity in PFC reflects
not the storage of WM features, but rather some mechanism
related to the control of WM representations stored elsewhere,
maybe by their own persistent activity (Miller and Cohen, 2001;

Curtis and D’Esposito, 2003; Emrich et al., 2013; D’Esposito and
Postle, 2015; Postle and Yu, 2020). Also, why do we see evidence
of persistent activity, even for a simple single item WM task,
in so many cortical and subcortical brain areas (Christophel
et al., 2017; Leavitt et al., 2017)? Redundancy is good to a
point, but future research should try to figure out which of
these numerous areas are necessary, what types of features they
might be representing, and if they might be encoding different
representational formats of WM. For example, disrupting
persistent activity with intervening distraction (Lorenc et al.,
2018; Rademaker et al., 2019; e.g., Hallenbeck et al., in press)
or TMS (e.g., Mackey and Curtis, 2017; Rademaker et al., 2017)
may be able to disentangle the relative roles of different cortical
regions. However, such efforts are tricky, as a distractor may
not affect a top-down control signal, especially when passively
viewed. Experiments parametrically manipulating task demands
in concert with visual distraction may help further clarify the
relative role different brain regions play in WM tasks. An
especially promising avenue for future exploration is comparing
decoded feature values from single trials of fMRI activation
to behavioral errors on those same trials (Ester et al., 2016;
Hallenbeck et al., in press; Li et al., in press).

Working memory is one of the few higher-level cognitive
systems that we have made substantial progress toward
understanding its neural implementation. Persistent activity has
been at the heart of this success. While it is inevitable that
additional mechanisms will be discovered, we have little doubt
that persistent activity will persist as a primary explanation
for how neural systems maintain WM representations. Future
empirical research should focus on understanding the degree
to which mechanisms are shared between the canonical and
sensory recruitment models of WM, and the degree to which
the challenges we highlighted in this review require revising the
theoretical mechanisms that support WM.
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