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There is a growing appreciation for the role of the thalamus in high-level

cognition. Motivated by findings that internal cognitive state drives activity in

feedback layers of primary visual cortex (V1) that target the lateral geniculate

nucleus (LGN), we investigated the role of LGN in working memory (WM).

Specifically, we leveraged model-based neuroimaging approaches to test the

hypothesis that human LGN encodes information about spatial locations

temporarily encoded in WM. First, we localized and derived a detailed topographic

organization in LGN that accords well with previous findings in humans and non-

human primates. Next, we used models constructed on the spatial preferences of

LGN populations in order to reconstruct spatial locations stored in WM as subjects

performed modified memory-guided saccade tasks. We found that population

LGN activity faithfully encoded the spatial locations held in memory in all subjects.

Importantly, our tasks and models allowed us to dissociate the locations of

retinal stimulation and the motor metrics of memory-guided saccades from the

maintained spatial locations, thus confirming that human LGN represents true WM

information. These findings add LGN to the growing list of subcortical regions

involved in WM, and suggest a key pathway by which memories may influence

incoming processing at the earliest levels of the visual hierarchy.

KEYWORDS
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1. Introduction

The lateral geniculate nucleus (LGN) of the thalamus is a key structure in the visual
processing hierarchy, conveying information received directly from the retina to primary
visual cortex (V1). The LGN shares several properties with early visual cortex, including a
spatiotopic organization and sensitivity to contrast, motion, and color. Though the LGN has
long been considered a simple feedforward relay station within the visual system (Jones,
1985; Sherman and Guillery, 2001), two pieces of evidence indicate that, in addition to
external inputs, internal state may also play an important role in driving LGN activity. First,
the majority of inputs to the LGN are feedback connections from V1 and other structures
(Guillery, 1969; Sherman and Guillery, 1996), motivating the view that the LGN may be the
earliest stage at which top-down input affects visual processing (Casagrande et al., 2005).
Second, endogenous attention to both spatial location (O’Connor et al., 2002; McAlonan
et al., 2008) and orientation (Ling et al., 2015) modulates LGN responses in a variety of
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ways that echo the effects of attention on activity in early visual
cortex (Pessoa et al., 2003; but see Shah et al., 2022). Thus, the LGN
appears to play an important role in attention by modulating early
visual activity in accordance with task goals. In this study, we asked
whether LGN similarly serves the temporary storage of mnemonic
information in working memory (WM).

WM has traditionally been localized to higher-order cortical
regions such as the prefrontal cortex (Wilson et al., 1993;
Goldman-Rakic, 1995; Durstewitz et al., 2000; Lara and Wallis,
2015; Mendoza-Halliday and Martinez-Trujillo, 2017; Riley and
Constantinidis, 2016; Leavitt et al., 2017) and posterior parietal
cortex (Gnadt and Andersen, 1988; Constantinidis and Steinmetz,
1996; Todd and Marois, 2004; Bettencourt and Xu, 2016).
However, there is growing support for the notion that WM
involves representations arrayed in parallel across multiple cortical
regions (D’Esposito and Postle, 2015; Curtis and Sprague, 2021).
In addition to WM representations being distributed across
cortex, recent findings suggest subcortical structures, including
the cerebellum (Brissenden and Somers, 2019), superior colliculus
(Shen et al., 2011; Dash et al., 2015; Sadeh et al., 2018; Rahmati et al.,
2020), and basal ganglia (Postle and D’Esposito, 1999; Chatham and
Badre, 2015), support WM maintenance and further underscore
the distributed nature of WM (Christophel et al., 2017; Lorenc and
Sreenivasan, 2021). Neuroimaging studies have also found WM
related signals in the thalamus, but not in LGN (Rypma et al., 1999;
Mayer et al., 2007). Despite little evidence directly implicating the
LGN in WM, indirect evidence does exist and motivates the present
study. Converging findings from human functional MRI (Harrison
and Tong, 2009; Serences et al., 2009; Saber et al., 2015) and
monkey electrophysiology (Supèr et al., 2001; van Kerkoerle et al.,
2017) demonstrate that visual WM representations are encoded in
the population activity of V1 neurons. Recent studies identified
persistent activity both in the superficial and deep layers of monkey
V1 (van Kerkoerle et al., 2017) and human V1 (Lawrence et al.,
2018) during WM. Persistent activity in the superficial layers is not
surprising given the long-standing belief that WM-related activity
in V1 is the result of feedback signals from higher order cortical
areas like PFC. The existence of persistent activity in the deep layers
of V1, however, suggests that during WM delays this activity might
be the source of feedback to downstream areas like the LGN.

Based on these findings, we predicted that LGN activity
may store information about items encoded in WM through the
sustained activation of neural populations tuned to task-relevant
visual features. To test this hypothesis, we used inverted encoding
models (IEMs; Brouwer and Heeger, 2009) and population
receptive field mapping (pRF; Figure 1A; Dumoulin and Wandell,
2008) of human fMRI data collected while participants performed
a demanding spatial WM task. These analytic approaches leverage
well-described properties of the visual system to support inferences
that are grounded in theoretically plausible mechanisms. We
combined these approaches with a novel variant of a memory-
guided saccade task that functionally dissociated visual stimulation
from mnemonic information from motor preparation to overcome
the inferential limitations of the sluggish hemodynamic response
in order to pinpoint WM maintenance-related activity. To preview
our results, we found that WM involved sustained activation of
spatiotopically selective regions of LGN, providing novel evidence
that the LGN is involved in WM maintenance.

2. Materials and methods

Portions of the data presented in this paper were previously
reported as part of a study on the role of the SC in WM (Rahmati
et al., 2020). Below we summarize the relevant methodological
details.

2.1. Participants

Six volunteers (ages 27–49; one left-handed; one female)
participated in this study. Subjects were healthy with no history
of psychiatric or neurological disorders, had normal or corrected-
to-normal visual acuity, and gave informed written consent. The
study was approved by the New York University Committee on
Activities Involving Human Subjects and the New York University
Abu Dhabi Institutional Review Board.

2.2. Stimulus display

We controlled stimulus presentation using MATLAB software
(The MathWorks, Natick, MA, USA) and Psychophysics Toolbox
3 (Brainard, 1997; Pelli, 1997). Stimuli were presented using a
PROPixx DLP LED projector (VPixx, Saint-Bruno, QC, Canada)
located outside the scanner room and projected onto a translucent
display located at the end of the scanner bore that subtended
∼32◦ of visual angle horizontally and vertically. Subjects viewed the
screen at a viewing distance of 64 cm through a mirror attached to
the head coil.

2.3. Eye tracking

To ensure fixation compliance and to record saccadic
responses, we measured eye position using an MRI-compatible
Eyelink 2K (SR Research, ON, Canada). We preprocessed and
scored eye-tracking data automatically, quantified the error
(absolute Euclidian distance between the saccade landing point and
the true target location), precision (average standard deviation of
tangential and radial components of the saccade landing points)
and response times of visual and memory guided saccades, and
plotted example saccade trajectories shown in Figure 2B using the
freely available iEye toolbox.1 Given the high degree of compliance
with fixation during the delay (fixation breaks occurred in 0.5–2.0%
of trials in four out of five subjects; the remaining subject made brief
saccades away from and then back to fixation on 7.0% of trials), we
did not exclude any trials from the fMRI analyses.

2.4. MRI data acquisition and
preprocessing

Magnetic resonance imaging data were acquired in the Center
for Brain Imaging at NYU with a 3-Tesla Siemens Prisma scanner

1 github.com/clayspacelab/iEye
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(Siemens, Munich, Germany) using a 32-channel head coil. Twenty
functional series of 120 volumes were collected for the retinotopic
mapping task and twenty functional runs (except for one subject
from whom we collected ten runs) of 232 volumes were collected
for the spatial WM task. Each functional run was acquired with
14 coronal slices and a gradient echo, echo planar sequence with
a 128 square matrix, 192 mm field of view, and 2.0 mm slice
thickness, leading to a voxel size of 1.5 × 1.5 × 2.0 mm (TR = 1.5 s,
TE = 41 ms, flip angle = 66◦, bandwidth = 752 Hz/pixel). A partial
Fourier factor of 7/8 was used to acquire an asymmetric fraction of
k-space and GRAPPA parallel imaging with a factor of two was used
to reduce acquisition time. The posterior edge of the acquisition
volume was aligned in the mid-sagittal plane with the posterior
edge of inferior colliculus. We also collected a high-resolution T1-
weighted MPRAGE (0.8 mm isotropic voxels, 256 × 240 mm)
in order to register functional scans to an anatomical image. In
addition, for each scanning session we collected a single whole-
brain-coverage functional image (TR = 10.8 s) with the same
spatial resolution as the partial-brain coverage functional images
to align the partial-coverage functional images to the whole-brain
anatomical images. For preprocessing anatomical and functional
fMRI data, we used FreeSurfer v6 and AFNI 17.3.0, respectively.
We motion-corrected the functional data through a rigid body
(six parameter) transform. After confirming that subject motion
was limited (mean [max] rotation = 0.13◦ [0.39◦], mean [max]
translation = 0.14 mm [0.50 mm]), we co-registered the functional
data with the anatomical images according to the transformation
calculated using the whole-brain-coverage functional image. All
functional data was kept in the original spatial and temporal
resolution (no smoothing) for both WM and retinotopy analyses.
Finally, we removed the linear trend and converted the time-series
to z-units for each voxel.

2.5. Population receptive field (pRF)
mapping

We used established procedures to model the pRF parameters
within voxels in LGN (Dumoulin and Wandell, 2008; DeSimone
et al., 2015). Subjects viewed a black and white checkerboard-
patterned bar whose elements reversed contrast with a full-cycle
frequency of 8 Hz (Figure 1A). The bar subtended 8◦ of visual
angle across its width and extended beyond the boundaries of the
screen along its length. The bar was oriented either vertically or
horizontally and swept across the screen perpendicular to the bar
orientation, passing through central fixation. Each scanning run
consisted of four 30 s sweeps (left to right, right to left, top to
bottom, and bottom to top) in a random order, with 12 s mean-
luminance blank periods at the start and end of the run. Subjects
performed a demanding fixation task that required them to map
the color of the fixation cross (which could turn red, green, blue,
or yellow every 1.5 s) to one of four button presses. We modeled
each voxel in terms of a Gaussian pRF (Figure 1A; DeSimone
et al., 2015, 2016). The pRF model provides a description of each
voxel’s BOLD response in terms of a retinotopic location and
extent. We also modeled the delay of the hemodynamic response
function (HRF) and the baseline of the BOLD signal (DeSimone
et al., 2015; Thomas et al., 2015). The delay parameter estimates

the time to peak and time to undershoot of the HRF, while the
baseline parameter ensures that the modeled and measured BOLD
signals vary about a single global mean. In an initial phase of the
parameter estimation, we used a sparse and coarse grid search with
an effective stimulus downsampled by 2D bilinear interpolation to
5% of the original resolution. The best fit from the sparse sampling
of model parameter space was used to estimate the best fitting
HRF parameters (delay to peak and undershoot), and then used
as a seed in the final phase of a fine-tuned gradient-descent error
minimization using the non-resampled stimulus.

For each subject, we defined the LGN region-of-interest (ROI)
as follows. First, we identified voxels with a spatiotopic organization
using the pRF data with a model threshold of r2

≥ 0.1 (Dumoulin
and Wandell, 2008; DeSimone et al., 2015). Then, we applied an
anatomical LGN mask based on a probabilistic atlas (Iglesias et al.,
2018) using segmentation provided in FreeSurfer. The pRF model
failed in 1 subject (S4), even when lowering the cutoff threshold,
and we could not discern topography in LGN. Thus, for further
analysis for this subject, we selected all voxels within the LGN based
on anatomic T1 images as well as retinotopic data collected and pRF
estimated for another independent study with a different protocol
(Mackey et al., 2017). Importantly, our spatial WM results were
not dependent on subject S4; indeed, the results were statistically
more robust when excluding S4, although we include S4 in the
results presented below for completeness. Using procedures similar
to (Winawer et al., 2010; Mackey et al., 2017), we estimated the
field of view (FOV) of the LGN map from the full pRF model. To
represent the FOV of the full LGN map in visual space, we used
2D Gaussians whose positions within the visual field and widths
were determined by each voxel’s pRF center and size parameters,
and whose maximum value equaled 1. We did this on the pRF
parameters aggregated across the left and right LGN of all subjects.
Since many points in the visual field were covered by several pRFs,
when combining the pRFs we mapped each visual field coordinate
to the maximum pRF value.

2.6. Spatial working memory experiment

We developed a modified delayed oculomotor response task
(Figure 3A) to measure WM representations in the LGN. Each trial
began with a brief visual stimulus (full contrast circle with a radius
of 0.25◦ of visual angle) presented for 300 ms in the periphery at
one of eight angular locations evenly spaced from 22.5 to 337.5◦ of
polar angle in 45◦ intervals and jittered by ±10◦, at an eccentricity
of 9–11◦ of visual angle (Figure 3B, Left, white dots). The color of
the visual stimulus indicated the transformation required to remap
its location to the goal of a later memory-guided saccade (MGS).
A white stimulus indicated no transformation; green indicated
a MGS to the location mirrored across the horizontal meridian;
red indicated a MGS to the location mirrored across the vertical
meridian; and blue indicated a MGS to the location mirrored
across both the horizontal and vertical meridians. After a 10.5 s
memory delay, a black dot appeared for 400 ms at a random
uniformly sampled polar angle (0–360◦) and radius (9–11◦ of
visual angle) from central fixation (Figure 3B, Left, black dots).
Subjects first made a visually-guided saccade (VGS) to this target,
and then immediately made a MGS to the transformed location
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guided by memory (1.4 s allotted for both saccades). Finally, the
stimulus was represented at the correct transformed location to
provide performance feedback (500 ms). After subjects made a
corrective saccade to the feedback target, an inter-trial interval (ITI)
of 9.8 s of central fixation preceded the next trial. Each scanning
run (10 per session) contained 16 trials (each 22.5 s), allowing
us to sample each of the eight angular locations twice. The four
MGS transformation conditions were counterbalanced across pairs
of successive scanning runs, resulting in 80 trials per condition
for four subjects (40 trials per condition for two subjects). Each
scanning session lasted 58 min. All subjects practiced one block of
16 trials outside of the scanner and one or two blocks in the scanner
before the experiment began.

Two task manipulations allowed us to uncover the nature of
the information maintained in the LGN during the memory delay.
First, the intermediate VGS prevented subjects from being able to
plan, and potentially maintain, the metrics of the MGS during the
delay. Second, the various transformations moved the task-relevant
location — the goal of the MGS — to a position in visual space
that was independent of the retinal position of the visual stimulus.
Together, these manipulations served to eliminate simple visual
and motor components while honing in on WM representations
of visual space.

2.7. Average BOLD timeseries

To measure the trial-averaged BOLD time course, we calculated
mean BOLD response on each TR within a trial in two subsets of
LGN voxels: RFin voxels with a pRF-estimated polar angle within
30◦ of MGS target and RFout voxels with a pRF-estimated polar
angle within 30◦; of the opposite location (i.e.,180◦) from the MGS
target in that trial. We then averaged the resulting time course
across trials separately for each voxel subset to produce the time
course in Figure 4. Group-level significance of LGN activation
during the memory delay was assessed by averaging the BOLD
signal over the last 4.5 s of the delay period and performing a 1-
sample (e.g., RFin vs. baseline) or 2-sample (i.e., RFin vs. RFout)
t-test after a 1,000 iteration bootstrap across subjects.

2.8. Inverted encoding model (IEM)

To reconstruct a representation of spatial WM from the
pattern of LGN activity during the memory delay, we used a
spatial IEM (Brouwer and Heeger, 2009). First, we modeled each
voxel’s response as a weighted sum of nine information channels,
each in the form of a squared one-dimensional cosine function
centered at one of the nine equally spaced polar angles around
an invisible ring. We estimated voxel-channel weights by fitting
a general linear model to a subset of data used only for training.
For this training, we only used trials in which the visual stimulus
and MGS target were co-located (“Same location” condition,
Figure 1A). We then inverted these regression weights to estimate
the contribution of each channel to a representation of visual-space
in the held-out data from the other conditions that required a
spatial transformation of the visual stimulus. Finally, we averaged
all information channels, weighted by their estimated channel

contribution, to reconstruct the population’s representation. We
estimated the population activity in each trial by averaging each
voxel’s BOLD activity during the last four TRs of the delay
period. To increase the signal-to-noise ratio, we combined trials
by computing a 2-fold mean trial timeseries, reducing the total
number of trials by half while maintaining the counterbalancing
of the exemplars across the memory locations. We repeated the
IEM training and reconstruction procedure using a 2,000 iteration
bootstrap procedure with different arrangements of trials for
computing the 2-fold mean timeseries. This ensured that any effects
were not simply due to bias in the sampling and recombination of
trials.

2.9. Model assessment

We quantified the goodness of our reconstructions through the
representational fidelity metric originally introduced by Sprague
et al. (2016), which quantifies the similarity between a given
reconstruction and a standard tuning function. We used a modified
version of the fidelity which adjusts the over sensitivity of the
fidelity to the gain of the reconstruction peak at the cost of
sensitivity to deviations from the reconstruction center (Rahmati
et al., 2020).

To validate the significance of our reconstructions, we built
2000 IEMs, each trained after shuffling the training data, and
compared the fidelity distributions corresponding to the real and
permuted data through a non-parametric Kolmogorov-Smirnov
test at the individual subject level and a paired t-test, after a 1,000
iteration bootstrap across subjects, at the group level.

In order to link the pRF model of retinotopy and the spatial
IEM, we compared each voxel’s polar angle preference derived
from the two models. For the pRF model, we simply used
the polar angle of the pRF center. For the IEM, we summed
all information channels weighted by their estimated regression
coefficients, yielding a polar angle tuning curve for each voxel. Since
the IEM estimates were derived from the task in which all stimuli
were 9–11◦ in the periphery, we restricted our analysis to LGN
voxels whose pRF centers were at least 5◦ in eccentricity. We then
calculated the circular correlation coefficient between the pRF polar
angle and the peak of the IEM tuning curve.

3. Results

3.1. Retinotopic mapping

After measuring the LGN pRFs through our mapping
procedures (Figure 1A), we overlaid the pRF model parameters
on the T1 anatomical image to examine properties of the modeled
pRFs (shown for a representative subject in Figure 1B and
individual subjects in Figure 1C). We found orthogonal polar
angle and eccentricity representations of the visual field along
the LGN. The topography revealed a graded lower-to-upper
visual field representation along the medial-to-lateral axis of the
LGN, and a graded foveal-to-peripheral visual field representation
along the ventral-to-dorsal axis. The LGN pRFs cover the visual
field contralaterally (Figure 2A). We found a “bow-tie”-shaped
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FIGURE 1

Topographic mapping of human lateral geniculate nucleus (LGN). (A) To model voxel population receptive fields (pRF), fMRI signal was collected
while subjects viewed bars of contrast reversing checkerboards that swept across the visual field. Sweeping bar positions converted into binary
apertures, were projected onto a 2D Gaussian model of a receptive field (RF), and convolved with a hemodynamic response function (HRF). To the
right, a single sample voxel in LGN is plotted for one run. (B) Enlarged axial slices through the human LGN in an example subject (red box inset).
R, right; P, posterior. From left-to-right, the columns depict the T1 anatomy, polar angle, eccentricity, and size parameter maps of an example
subject (S3; thresholded at r2 ≥ 0.1). The colored circles are visual field keys. (C) Topography of LGN is consistent across other subjects.

FIGURE 2

(A) Radial histograms of population receptive fields (pRF) polar angle in lateral geniculate nucleus (LGN) demonstrate strong contralateral coverage
of the visual field. Based on pRFs from all subjects, the lines are the mean fractional volume representing each polar angle (±SEM). (B) Aggregate
field of view (FOV) when pRF location and size parameters are combined. Each gray dot represents the center of single voxel pRFs. The color
represents the maximum pRF value across the population of voxels in the LGN and reflects the relative effectiveness of visual stimulation in evoking
a response in the LGN. (C) Size of voxel pRFs in the LGN increased linearly with eccentricity. Each dot represents a subset of voxels grouped
according to their eccentricity (30 equally-distanced bins). Colors correspond to different variance-explained (VE) thresholds used for
region-of-interest (ROI) selection. Lines, linear fit.

distribution of polar angles, as found in previous fMRI studies of
the retinotopy of the LGN (Schneider et al., 2004; DeSimone et al.,
2015), which seems to imply an underrepresentation of angles near
the vertical meridian. However, after we estimated the FOV of the
LGN by considering the full receptive field model that combines
the pRF centers and sizes, it is clear that most retinal locations have
LGN representation (Figure 2B).

In addition, and similar to non-human primates (Casagrande
and Norton, 1991; Xu et al., 2001), we found a positive correlation

between the size and eccentricity of pRF parameters in the LGN
(Pearson’s r = 0.50, p < 0.001; Figure 2C). This correlation
value and the slope of this relationship increased as a function
of voxel selection criteria (i.e., variance explained, VE). Overall,
our model of the topographic structure of the human LGN closely
resembles that of non-human primates (Malpeli and Baker, 1975;
Xu et al., 2001) and previous reports in humans (Chen et al.,
1999; Schneider et al., 2004; Kastner et al., 2006; Denison et al.,
2014).
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FIGURE 3

Working memory task schematic and behavioral data. (A) Schematic of four types of memory guided saccade (MGS) trials. In each condition, trials
began with a brief visual target located in the periphery (colored dots; left column). Following a delay, subjects made a visually guided saccade (VGS)
to a target whose location was unpredictable. Then, subjects immediately made a MGS to a location based on the initial visual target. In one
condition, the MGS was directed to the visual target. In the other conditions, the MGS was made to simple geometric transformations of the visual
target (dashed circles, left column; for reference here but not displayed). These included mirror transformations across each meridian and both
meridians. The color of the visually-cued target indicated the type of transformation. Feedback was provided after the MGS with a visual stimulus at
the correct location. Because of the VGS, the metrics of the MGS could not be predicted. The transformations dissociated the goal of the MGS from
the visually-stimulated retinal position. (B) Left: Locations of VGS and MGS targets were distributed 9–11◦ in the periphery. Right: MGS trajectories
(white lines) from an example subject that converge on a single location. Note that the saccades start from a wide variety of peripheral locations
following the VGS, but converge in these examples to MGS target locations (black circles) just above the horizontal meridian in the right visual field.
(C) VGS were slightly more accurate and significantly slower than MGS. Bars = mean (± SEM).

3.2. Spatial working memory

Subjects had similar accuracy, precision, and latency of visual
and memory-guided saccades to previous studies that used delayed
saccade or antisaccade tasks (Curtis and Connolly, 2008; Saber
et al., 2015; Montez et al., 2017). This indicates that despite the
transformations and double saccades, subjects could perform the
task well (Figure 3C). Performance did not differ across task
conditions (one-way RM ANOVAs, all ps > 0.4). The visually-
guided saccades were slightly longer in latency than previous
reports (c.f., Curtis and Connolly, 2008), perhaps owing to the
long delay, complexity of the task, or the simultaneous task of
remembering the future memory-guided saccade target.

The average BOLD signal in LGN voxels with RFs that
overlapped the MGS target persisted above pre-trial baseline during
the memory period [percent signal change; mean = 0.051, 95%
CI = (0.016 0.087), one-tailed Student’s t-test, p < 0.01; RFin in
Figure 4]. In contrast, there was no evidence for persistent activity
during the memory delays in voxels tuned to locations opposite
the MGS target (RFout in Figure 4). Memory-related activity was
significantly greater for RFin relative to RFout voxels [percent signal
change; mean = 0.04, 95% CI = (0.001 0.079), one-tailed Student’s

t-test, p < 0.05]. This finding indicates (i) that neural activity in the
LGN persists during the temporary retention of spatial information
despite the lack of visual stimulation, and (ii) that memory-related
persistent activity in the LGN is spatially specific.

Motivated by the above trial-averaged BOLD data and our
pRF findings, we used a multivoxel model of visual space, the
IEM (Sprague and Serences, 2013; Rahmati et al., 2018, 2020),
to test whether topographic patterns of activity in human LGN
encode locations held in WM. Conceptually, IEM enables us to
map a multivoxel population response into the coordinates of
visual space. We assumed an underlying neural architecture based
on the retinotopic organization of the voxels within LGN and
modeled each voxel’s response with a set of basis functions that tiled
polar angle space. Next, we tested the IEM model trained on no-
transformation trials on trials that required transformations (see
section “2 Materials and methods”). Consistent with the notion
that LGN population delay activity encodes spatial information
in WM, our model was able to accurately reconstruct the
transformed location of the MGS (Figure 5A, Right). Importantly,
these locations stored in WM were computed from spatial
transformations of the visual targets and thus were not locations
that were retinally stimulated during stimulus presentation. Models
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FIGURE 4

BOLD time courses from the human lateral geniculate nucleus
(LGN) during working memory. The solid magenta line represents
the group average (± SEM) BOLD signal from LGN voxels whose
receptive fields were within a 30◦ wedge centered at the MGS
target (RFin). The dashed blue line represents the average (± SEM)
from voxels whose receptive fields were within a 30◦ wedge
centered 180◦ opposite the MGS target (RFout). The inset depicts
the logic of the voxel definition based on the spatial selectivity of
LGN voxels and the location of the MGS target. When the target was
within the LGN receptive fields, BOLD signal persisted above the
pretrial baseline during the memory delay (p < 0.01) and was
significantly greater than the signal from the LGN voxels
representing the visual field opposite of the target (p < 0.01). The
delay period analyzed was limited to the last four TRs of the
memory delay (light gray box). We choose this interval to isolate
memory maintenance as it was long after the visual target and prior
to the cue to generate saccades. The trial components on the time
axis included the target (t), delay, visual and then memory guided
saccades (s), feedback (f), and inter-trial interval (iti).

trained on the location of the visual target or the VGS location
were unable to reconstruct these locations (Figure 5A, Left
and center), indicating that LGN delay activity encoded the
abstract representation of the memory location rather than the
visually presented targets. Quantification of these results using
our modified representational fidelity metric confirmed that LGN
population activity during the delay was spatially tuned only for
the location of the MGS target [subject mean fidelity = 0.13,
95% CI = (0.03.018), one-tailed Student’s t-test between real and
permuted reconstructions, p < 0.01; Figure 5B]. Emphasizing the
strength of this finding, we observed significant fidelity at the MGS
location at the individual level in every subject (Figure 5C). Overall,
the results were consistent and provide robust evidence for spatial
WM encoding in topographically-organized human LGN.

4. Discussion

The LGN occupies the earliest stage in the brain’s visual
hierarchy, and thus has the potential to influence incoming

processing of the external visual world based on our internal state
(Koch and Ullman, 1985). Motivated by evidence that visual WM
activity selectively activates layers of V1 that receive top-down
projections from higher visual regions as well as layers that project
to LGN (van Kerkoerle et al., 2017; Lawrence et al., 2018), we
hypothesized that LGN population activity encodes information
about locations stored in spatial WM. We employed model-
based neuroimaging analyses based on the known topography of
visual field maps to reconstruct spatial WM representations in
retinotopically organized LGN. Moreover, we found that LGN
activity contained spatial WM information independent of retinal
stimulation or planned saccades. This work adds to the growing
list of subcortical regions - particularly the thalamus (Watanabe
and Funahashi, 2012)–that represent WM-relevant information
(Sreenivasan and D’Esposito, 2019). Previous studies of WM and
the thalamus have largely focused on the mediodorsal nucleus
(Funahashi, 2013; Peräkylä et al., 2017), which has reciprocal
connections with the prefrontal cortex. The present study makes
a novel contribution to this literature by demonstrating that
a retinotopically organized portion of the thalamus–the LGN–
encodes representations of space in support of WM. Intriguingly,
this finding is consistent with evidence that representations stored
in visual WM can bias visual input at early stages of processing
(Soto et al., 2008; Kiyonaga and Egner, 2013).

4.1. Retinotopy in human LGN

The retinotopic representations we observed in LGN accord
well with previous fMRI work. Specifically, we found a contralateral
organization with a transition from lower to upper visual field
representation reflected in superior to inferior regions of LGN
(Chen et al., 1999; Schneider et al., 2004). We also found that
foveal-to-peripheral representation was organized from posterior
to anterior, although the foveal representation was inconsistent in
its location along the inferior-superior axis across subjects. When
considering the estimated RF centers, we replicated the previous
observation that the vertical meridians are underrepresented (i.e.,
a bowtie-shaped distribution of RF centers across the visual field;
shown in the distribution of dots in Figure 2B; Schneider et al.,
2004). However, when we accounted for the full extent of the
estimated pRFs (color map in Figure 2B), we found that voxels in
LGN represented the entire visual field.

4.2. Working memory representations in
LGN

In order to identify WM representations in LGN, we used a
spatial IEM, which is a well-established method to derive neural
representations from BOLD fMRI activity. Previous studies have
employed similar models to describe WM storage in PFC and
PPC (Ester et al., 2015), visual cortex (Ester et al., 2013; Rahmati
et al., 2018), and SC (Rahmati et al., 2020). We show that models
trained on delay period activity were able to reconstruct the
memory target location (but not the visual stimulation or the
visual saccade target), suggesting that the population activity in
the human LGN encodes spatial representations of task-relevant
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FIGURE 5

Modeling working memory (WM) representations in human lateral geniculate nucleus (LGN). (A) We used the second half of delay period activity in
human LGN to reconstruct visual space. From left to right: the average reconstructed WM representation (± SEM) in visual space aligned to the
visually-cued target, visually guided saccade (VGS) target, and memory guided saccade (MGS) target locations, respectively. In each panel, all trials
are aligned to the corresponding reference location centered at 0◦. The dashed white lines depict reconstructions from BOLD data with the trial
labels permuted. (B) Representational fidelity (± SEM) corresponding to three reference locations, compared to shuffled data (white lines) computed
at the group level. Note that the LGN population activity during the delay is largely tuned for the visual-spatial location of the MGS (p < 10-15), not
the visual target or VGS. (C) Even at the individual subject level, we find greater fidelity for the MGS location for all subjects. In one subject there was
smaller tuning for the visually-cued target, but this small effect was not significant at the group level.

mnemonic information that are abstracted from retinal stimulation
or motor intention. Importantly, our ability to successfully model
and decode spatial WM representations likely depended on the

retinotopic organization of the LGN, which we verified with
independent models of the receptive fields of voxels in LGN.
Leveraging the topographic organization of the LGN and the
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receptive fields of individual voxels, we demonstrated spatially-
selective persistent activity during WM maintenance (Figure 4).
Together, these findings indicate that WM information in LGN
is sustained via selective activation of spatially organized neural
populations. The present results echo our previous report from
this dataset that topographically-organized SC voxels represent
WM information (Rahmati et al., 2020). An important question
is whether and to what degree the nature of WM representations
in LGN, a structure typically associated with visual perception,
differ from those in SC, a region largely involved in visuomotor
activity. Future studies that manipulate the visual features of the
memoranda (e.g., spatial frequency) and the intended behavioral
output (e.g., the type of motor response required) in concert with
intervening visual stimulation or attention demands may be able to
disentangle the roles of these and other subcortical regions in WM.

One plausible mechanism by which the LGN may represent
spatial WM information is through population-based codes, such
as attractors, that have been proposed to underlie mnemonic coding
of visual space in the PFC (Compte et al., 2000; Khona and
Fiete, 2022). Coherent mnemonic representations of space across
thalamus and visual cortex may be organized by LFP oscillations at
the alpha (8–13 Hz) frequency, which are thought to originate in
LGN and facilitate visual thalamocortical communication (Lorincz
et al., 2009; Hughes, 2011; but see Halgren et al., 2019). In
line with this notion, the pattern of alpha oscillations over
posterior cortical EEG electrodes has been used to reconstruct
spatial WM representations (Foster et al., 2016), suggesting a
potential link between alpha, the LGN, visual cortex, and spatial
WM.

An important question is precisely how spatiotopic WM
representations emerge in LGN. There are several lines of evidence
that suggest that top-down influences from visual areas modulate
LGN activity. For example, attention enhances feedback signals
from V1 to LGN (Mock et al., 2018) while optogenetic activation
of corticogeniculate neurons decreases response gain variability
and increases information coding in LGN (Murphy et al., 2021).
Most relevant to the current study, van Kerkoerle et al. (2017)
recorded multi-unit and LFP activity in primate V1 during a
WM task and found that sustained information about WM items
was encoded in superficial and deep layers, indicating that WM
signals in V1 represent feedback from cortex and feedback to
LGN, as opposed to feedforward signals from LGN. The cascade
of influences from higher visual regions (and beyond) to V1 and
on to LGN may serve to improve the efficiency with which we
can prioritize processing of spatial locations that are relevant to
our internal goals (Koch and Ullman, 1985). At the same time,
we cannot rule out the possibility that mnemonic representations
in LGN are at least partially shaped by extracortical influences;
for example, previous work has identified the thalamic reticular
nucleus (TRN) as an early source of attentional modulations in
LGN, consistent with the finding that attentional effects are larger
in LGN than in V1 (O’Connor et al., 2002). While simultaneously
imaging the LGN and visual cortex at high resolution presents a
technical challenge that was beyond the scope of the present study,
future studies that are designed to directly compare WM activity
in visual cortex and LGN can help uncover the degree to which
LGN WM representations are directly shaped by visual cortical
activity.
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