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Review
Glossary

Delay tasks: the experimental paradigm typically used to study the neural basis

of working memory (WM). A trial in a delay task begins with a brief

presentation of a sample item. The subject encodes this item into WM and

maintains this item over a blank ‘delay’ period of a few to several seconds. At

the end of the delay period, a probe stimulus appears and the subject initiates a

behavioral response contingent on the WM representation of the sample item.

A key feature of delay tasks is that they temporally segregate subcomponents

of WM such as stimulus encoding, storage, and retrieval/response.

Persistent neural activity: above-baseline neural activity that remains stable

and elevated during a trial of a delay task. Persistent neural activity begins

during the sample presentation and persists throughout the delay period,

returning to baseline at the end of the trial. According to the fixed-selectivity

model of WM (see main text), persistent neural activity in neurons selective for
What are the neural mechanisms underlying working
memory (WM)? One influential theory posits that neu-
rons in the lateral prefrontal cortex (lPFC) store WM
information via persistent activity. In this review, we
critically evaluate recent findings that together indicate
that this model of WM needs revision. We argue that
sensory cortex, not the lPFC, maintains high-fidelity
representations of WM content. By contrast, the lPFC
simultaneously maintains representations of multiple
goal-related variables that serve to bias stimulus-specific
activity in sensory regions. This work highlights multiple
neural mechanisms supporting WM, including tempo-
rally dynamic population coding in addition to persistent
activity. These new insights focus the question on
understanding how the mechanisms that underlie WM
are related, interact, and are coordinated in the lPFC and
sensory cortex.

Introduction
WM comprises the set of operations that support the active
retention of behaviorally relevant information over brief
intervals. Given the central role of WM in goal-directed
behavior, establishing the neural basis of WM has been a
priority of neuroscience research. Early WM studies
observed that selective increases in neural activity during
the presentation of a to-be-maintained sample item per-
sisted throughout the blank ‘delay’ interval of a WM delay
task, bridging the temporal gap between the sample and
the subsequent contingent response [1,2]. This work
inspired the theoretical framework that has predominated
in the field: neurons or neuronal populations that are
selectively tuned to the to-be-remembered information
hold this information in an active state through persistent
activation [3]. We refer to this model, which emphasizes
stable persistent neural activity (see Glossary) in selective
neurons as the fixed-selectivity model. Motivated by this
model, functional MRI (fMRI) studies in humans and
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electrophysiological studies in monkeys have consistently
identified persistent neural activity in the lPFC, leading
many to conclude that the lPFC stores representations of
WM memoranda.

A decade ago, we provided a critique of the literature on
persistent activity in the context of contemporary models of
prefrontal cortical function [4]. We hypothesized that, in
contrast to existing theories of WM, persistent lPFC activ-
ity signifies attention directed to internal representations
maintained in sensory cortices. Viewed through the lens of
the fixed-selectivity model, evidence for this proposal is
limited. Studies of sensory and motor function, however,
suggest that information is likely to be represented
through the combined activity of neural populations with
diverse tuning properties rather than individual highly-
tuned neurons [5,6]. This notion offers a promising frame-
work for understanding WM.

In recent years, analytic and methodological advances
(Box 1) have expanded researchers’ ability to capture the
multivariate nature of population coding and the causal
relationships between neural activity and behavior. The
findings generated using these approaches underscore the
need for a revision of existing views of WM. In light of these
results, we revisit the issue of how information remains
active during WM. The studies we discuss here focus on
WM memoranda is the mechanism by which WM information is actively

maintained.

TMS: transcranial magnetic stimulation.

Voxel: the spatial unit for measuring changes in blood-oxygenation-level

dependent (BOLD) signal with fMRI. A voxel is a 3D volumetric pixel, typically

of the order of 3 mm3. BOLD signal within a voxel is an indirect measure of the

summed activity of many tens of thousands of neurons. A single whole-brain

fMRI image can comprise 60,000–100,000 voxels.

Working memory: the set of operations that support the ability to maintain

information in an active state, to manipulate that information, and to use

that information to guide behavior. WM is essential for several aspects of
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Box 1. Methodological advances

Here we briefly describe analytic and methodological advances that

have furthered our understanding of the neural basis of WM. The

reader is encouraged to seek out some of the excellent reviews on

these approaches (referenced below) for more details.

Decoding analysis

Unlike standard univariate analyses, which independently examine

data from individual neurons or voxels for differences across

conditions, multivariate decoding methods consider data from

several neurons or voxels at once to identify patterns of activity

that encode task-related information [10–13]. This technique uses

machine learning algorithms to decode, or categorize, unlabeled

test data using labeled training data. Successful (above-chance)

decoding signifies that the activity pattern entered into the

algorithm differs between the categories of interest, implying that

the underlying neural activity encoded information about these

categories. The chief advantage of this approach is potentially

increased sensitivity [78]. However, patterns of neural activity may

reliably distinguish between conditions for various reasons, some of

which are not anticipated by the experimental design [18,79].

Caution is therefore required when interpreting the nature of the

information identified via decoding analysis [80].

Forwarding encoding models

Conversely, encoding models predict fMRI activity from task

conditions [81–83]. These models rely on a priori assumptions

about the features of task conditions that will result in changes in

the hemodynamic response. In WM studies, forward encoding

models of visual cortex have been constructed using knowledge

about tuning for visual features [17]. Neural activity in hypothetical

populations of neurons (channels) tuned to different values in

feature space can be reconstructed from training data by estimating

the degree to which each voxel’s response contributes to a given

channel. The critical advantage over decoding analyses is that this

approach can predict fMRI responses to novel stimuli [14]. Encoding

approaches are potentially more powerful for identifying informa-

tion encoded in neural activity, but are constrained by the validity of

the underlying assumptions of the model.

TMS

TMS uses magnetic fields to focally modulate cortical excitability

[84]. In WM studies, TMS is used either offline to modulate cortical

function for the duration of the experiment or online to modulate

activity during specific epochs of a task. TMS effects on behavior or

neural activity in distal regions can support strong causal inferences

about the functional role of the regions targeted with TMS.

Attenuation of TMS effects as a function of distance from the coil

imposes restrictions on which brain regions can be targeted.
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visual WM, but the general principles discussed herein
apply to WM in other modalities.

Evidence for persistent WM representations in visual
cortex
Neurons in visual cortex are selectively tuned to visual
stimulus features and are consequently well suited for
maintaining high-fidelity representations of visual infor-
mation in the service of WM [7]. Yet, from the perspective
of the fixed-selectivity model, evidence for sustained WM
representations in visual cortex has been equivocal.
Although sustained responses have been observed in tem-
poral cortex [8], studies typically describe transient neural
responses to sample stimuli without any subsequent sus-
tained activation. Studies of early visual regions routinely
note an absence of persistent activity [9].

Contemporary multivariate encoding and decoding sta-
tistical analyses (Box 1), however, consistently demon-
strate that visual cortex does retain sensory WM
2

representations. Decoding analysis applied to fMRI or
electrophysiological data can identify activity distributed
across neurons or neural populations that encodes task-
relevant information [10–13]. By contrast, forward encod-
ing models take advantage of assumptions about neural
population tuning to reconstruct the response of hypothe-
tical channels from fMRI voxels that represent the
weighted sum of subpopulations of neurons tuned to these
channels [14]. Both approaches can test whether feature or
item information is encoded in the multivariate patterns of
activity during WM, regardless of whether this activity
exhibits sustained stimulus-selective responses during
sample presentation that persist across the blank delay
interval of the WM task. Studies incorporating these
methods find that patterns of delay period activity in early
visual cortex contain information about simple visual fea-
tures held in WM [15–19] (Figure 1A,B). Similarly, delay
patterns in occipital and temporal regions specialized for
object representation encode actively maintained visual
objects [20–24], consistent with studies that inferred a role
for temporal cortex in WM storage on the basis of persis-
tent neural activity in these regions [8].

Moreover, this work establishes four key properties of
population coding of WM information in visual cortex. First,
decoding and forward encoding analyses have extracted
information specific to the contents of WM from visual cortex
activity across multiple timepoints during the delay period
[15,17,24,25], indicating that visual cortical WM represen-
tations persist throughout the period separating the visual
stimulus and the contingent behavioral response. Second,
given the limited capacity of WM [26], neural coding of
sensory representations should prioritize task-relevant over
task-irrelevant information [27]. Selectivity for task-rele-
vant information was illustrated in a study where decoding
based on the multivoxel pattern of delay period activity in
early visual cortex was successful only for the task-relevant
feature (orientation or color) of the memoranda [16]. Simi-
larly, other work has shown that multivoxel patterns of
delay period activity encode only items cued in the sample
display as task relevant [15,24]. Third, and in contrast to the
fixed-selectivity model, information about items maintained
in WM can be encoded by neural populations that are not
highly selective for the maintained stimuli. A recent fMRI
study examined the degree to which decoding information
about items maintained in WM was dependent on voxels
that were highly selective for the WM items. The key finding
was that removing highly selective voxels from the analysis
did not substantially reduce the ability to decode informa-
tion about the WM items [24]. These results are in line with
studies demonstrating that perceptual [28] and motor [5]
information is distributed across neural populations with
diverse tuning preferences.

Fourth, and perhaps most importantly, fMRI measures
of sensory representations in visual cortex are tied to the
precision of WM representations. For example, one study
found decreases in the ability to decode maintained direc-
tions of motion from multivoxel delay period activity as the
number of to-be-maintained motion directions increased,
possibly due to interference between spatially overlapping
representations [29]. Reductions in the ability to decode
the contents of WM predicted decrements in the precision



0 2 4 6 8 10 12 14
40

50

60

70

80

90

100
De

co
di

ng
 a

cc
ur

ac
y 

(%
)

Time (s)

Chance level

Una�ended gra�ngsKey:Areas V1-V4
Working memory

Sample gra�ngs

Test gra�ng

Cue

(A) (B)

(C)

0.10

0.05

0.00

-0.05

-0.10

100

80

60

40

20

0

Re
sp

on
se

 (a
rb

itr
ar

y 
un

its
)

Di
sp

er
sio

n 
(d

eg
re

es
)

R2 = 0.4386
P < 0.01

-67.5
-45.0

-22.5
0.00

22.5
45.0

67.5
90.0

8-12 sec

0 5 10 15
Recall error (degrees)

Orienta�on channel

Areas V1 & V2v Key:
Time (s)

2 4
6 8
10 12
14

TRENDS in Cognitive Sciences 

Figure 1. Evidence for sustained working memory (WM) representations in the early visual cortex. Subjects maintained an orientation of a grating over a delay period. (A) A

decoding analysis demonstrated successful decoding of the cued orientation throughout the delay period. Decoding accuracy for maintained orientation (green circles) was

comparable to decoding accuracy for the orientation of visually presented gratings (red triangles). Adapted from [15]. (B) A forward encoding analysis found tuning for

maintained orientation, indicating that information about the maintained orientation was present during the delay. As in (A), this information was preserved throughout the

delay period (different color channel response functions represent tuning at different points during the trial; error bars have been omitted for clarity). (C) The relationship

between the degree of tuning of the channel response functions (estimated as dispersion of the best-fit Gaussian), which was taken as a proxy for the precision of the WM

representation, and behavioral accuracy in reconstructing the maintained orientation. Greater tuning (i.e., less dispersion in the channel response functions) predicted

increased accuracy across subjects, establishing a relationship between the quality of WM information stored in visual cortex and memory precision. Adapted from [17].
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of memorized motion direction in individual subjects. For-
ward encoding estimates of WM representations also cor-
respond to memory precision. Ester and colleagues [17]
estimated population tuning curves for maintained orien-
tations from visual cortical activity and used the width
of these tuning curves as an inverse proxy for tuning for
the maintained orientation. Tuning precision was corre-
lated with subjects’ behavioral precision in reconstruct-
ing the remembered orientation (Figure 1C). Although
compelling, these studies do not indicate whether the
observed modulation of memory precision is a direct or an
indirect consequence of neural activity in sensory cortex.
Fortunately, transcranial magnetic stimulation (TMS)
(Box 1) experiments can provide causal evidence for
the role of sensory activity in maintaining high-fidelity
WM representations. TMS applied to early visual cortex
during short-term retention of visual stimuli results in
a reduction in behavioral measures of WM precision
[30–32]. Together, this work supports the notion that
visual cortex stores precise representations of visual
WM contents.

The role of the lPFC in WM
The most pervasive observation in the WM literature is
that lPFC activity persists throughout WM maintenance.
This finding has been interpreted as evidence that lPFC
delay activity encodes sensory features of WM items [3].
However, in addition to displaying coarse selectivity for
WM items and features [33], lPFC activity exhibits selec-
tivity for a broad range of task variables during the delay
period of WM tasks. For example, lPFC neurons show
differential preferences for task rules [34], contingent
motor responses [35], and stimulus–response mappings
[36]. Studies examining population coding of lPFC delay
activity have similarly found information about stimuli
[37], rules [25], and object categories [38] throughout the
delay.

Not-so-selective selectivity

How is the lPFC simultaneously selective for multiple task
variables? An increasing number of studies find that,
rather than utilizing distinct populations to encode each
task variable, activity in the lPFC encodes multiple task
variables within a single population of neurons [37,39,40].
For example, Machens and colleagues demonstrated that
individual lPFC neurons responded to combinations of two
task variables (maintained stimulus identity and elapsed
time), but that information about each task variable could
be independently extracted from the population code [41].
This finding suggests that lPFC representations can be
3
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high dimensional, because they simultaneously encode
multiple pieces of information that can be interpreted by
neural populations in hierarchically lower regions accord-
ing to their functional relevance.

Recent work by Rigotti and colleagues further char-
acterized high-dimensional representations of multiple
task variables in the lPFC [42,43]. They demonstrated
that activity in a population of lPFC neurons simulta-
neously encoded information about all task variables
(task, object 1, and object 2) during the delay period of
a complex object-sequence WM task. To examine the
degree to which these high-dimensional representations
arose from neurons’ selectivity for individual task vari-
ables (e.g., task A vs task B), the authors artificially
abolished classical neuronal selectivity. This was accom-
plished by adding noise to each neuron’s response to
equate the average response across single task variables
(e.g., such that the average response to tasks A and B
were equivalent), while preserving differences in firing as
a result of different combinations of task variables. Strik-
ingly, and counter to the predictions of the fixed-selectiv-
ity model, population selectivity for task variables
persisted even when selectivity for individual task vari-
ables was abolished. Most critically, this work highlights
two conditions that give rise to high-dimensional lPFC
representations. The first condition is nonlinear mixed
selectivity, or nonlinear neural responses to combinations
of task variables. Artificially abolishing nonlinear mixed
selectivity reduced the dimensionality of the representa-
tions, limiting the information that was available for
readout by other regions, and error trials were associated
with reduced nonlinear mixed selectivity. The second
condition is randomly connected networks of neurons,
which can support complex and diverse input–output
mappings [44]. The perspective presented in this intri-
guing study has the potential to demystify the seemingly
limitless ability of the lPFC to represent task informa-
tion; however, an important future direction will be to
specify the constraints (such as anatomical input from
sensorimotor regions [45]) that limit the dimensionality
of information encoded by lPFC activity.

Interpreting stimulus selectivity

How do we interpret evidence that lPFC activity is selec-
tive for maintained stimuli? Does this imply that the lPFC
maintains sensory properties of the WM stimulus [33],
analogous to sensory cortices? Duplicating the sustained
sensory information in sensory cortices seems unnecessary
and metabolically costly [46]. Furthermore, from the per-
spective of the fixed-selectivity model, the maintenance of
sensory representations in the lPFC would seem to require
that lPFC neurons exhibit a degree of tuning for sensory
features comparable with that of neurons in sensory cortex.
This does not appear to be the case. For example, neurons
in the dorsal lPFC exhibit preferences for task-relevant
directions of motion, but are markedly less motion selective
than neurons in the motion-sensitive middle temporal
(MT) visual area [47].

The results from population decoding studies also sup-
port a dissociation between stimulus-specific lPFC repre-
sentations and sensory representations. In one study,
4

researchers were able to decode the identity of the memor-
anda from delay period activation patterns in visual cortex
– but not the lPFC – when subjects were required to
maintain a visual representation [48]. The pivotal finding
was that stimulus-specific activation patterns emerged in
the lPFC when subjects retained the category of the item,
rather than the item itself. This finding accords well with
prior work showing that the lPFC preferentially encodes
and maintains arbitrary and abstract representations of
object category over representations of visual similarity
[38,49–51]. Further support for the distinction between
stimulus-selective lPFC representations and sensory
representations comes from a second fMRI study [24]. This
study demonstrated that, in contrast to visual cortex,
where category-selective patterns of delay period activity
were more similar for visually similar categories, category-
selective lPFC activity patterns were not sensitive to visual
similarity, suggesting that the representations encoded by
these patterns were categorical but not sensory in nature.

Source of top-down input

Although the above findings are compatible with the well-
described role of the lPFC in storing and integrating
information, an alternate perspective is that, rather than
representing the storage of information, the primary role of
the lPFC during WM is to influence representations in
other regions [52]. Specifically, patterns of activity in the
lPFC may serve as top-down signals used to bias the
competition of neural representation in hierarchically
lower areas, such as sensorimotor [4] and parietal regions
[53]. Indeed, the lPFC sits at the apex of the motor hier-
archy [54] and possesses diverse anatomical connections
capable of directly influencing a variety of regions [45]. We
propose that activity in the lPFC is a likely source of top-
down input to visual systems during visual WM.

A causal link between prefrontal activity and the prop-
erties of visual cortical neurons has been established
through electrical microstimulation [55], pharmacological
manipulations [56], and intervention with TMS [57]. Until
recently, however, there was little direct evidence that
lPFC input modulated visual activity during WM. Studies
combining TMS and measures of neural activity such as
fMRI and electroencephalography (EEG) provide such a
link. TMS administered to focal regions of the lPFC causes
a significant reduction in the selectivity of fMRI responses
in visual cortex, suggesting that lPFC inputs enhance
selectivity in visual cortex during WM [58,59]. Comparable
results were found in patients with stroke-induced lesions
to the lPFC: the selectivity of responses was reduced in
ipsilesional relative to contralesional visual cortex [58].

Although highly informative, these experiments did not
establish whether lPFC input phasically influenced visual
cortical selectivity during a specific stage of the WM task or
whether lPFC input operated at multiple stages during
WM to preserve visual selectivity throughout WM main-
tenance. Two recent papers described TMS effects on
selectivity during stimulus encoding and maintenance.
One group found that TMS applied over the caudal lPFC
caused reduced selectivity for the sample stimuli, as indi-
cated by enhanced EEG responses to task-irrelevant sam-
ple stimuli as well as marginally suppressed EEG
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Figure 2. Multiple neural mechanisms of working memory (WM). (A) A simplified schematic comparing and contrasting the fixed-selectivity model with population coding

models involving static and dynamic temporal codes. Orientation tuning curves for three hypothetical neurons, A, B, and C, are shown in the top inset; neurons A–C are

tuned to –458, 08, and 458, respectively. Neural responses to the to-be-maintained orientation (178) are indicated by the red arrow and broken line in the inset. The perceptual

and mnemonic representations are depicted below the inset. The visually presented sample orientation (oriented at 178) elicits a perceptual representation and is followed

by a delay period. The mnemonic representation of the sample orientation persists across the delay period and is followed by a probe stimulus that elicits a perceptual

representation. Below this are schematics for three different potential neural models of WM. Note that the timecourses shown here are for illustrative purposes only and do

not depict actual data. Top row: The fixed-selectivity model, primarily derived from single-unit recordings in monkey lateral prefrontal cortex (lPFC), predicts that neuron B,

which is selective for the maintained orientation (refer to the tuning curves in the inset), will exhibit persistent, sustained activity. Neuron C, which is less selective for the

maintained orientation, exhibits persistent activity to a lesser degree, while neuron A’s activity remains at baseline. Middle row: Evidence for static population coding

comes primarily from fMRI decoding and forward encoding studies of visual cortex. Here the pattern of activity across neurons can encode stimulus orientation in the

absence of highly selective neural responses. This pattern is sustained throughout maintenance. Bottom row: Dynamic population coding has been demonstrated largely in

monkey lPFC. Despite time-varying activity in all three neurons, the representation of orientation remains stable. The relevant orientation is encoded by a different

combination of neural responses at each point in time. Note that each of these models is potentially compatible with the notion of mixed selectivity, where activity within a

single neuron or neuronal population can be simultaneously selective for multiple goal-related variables. Portions of this figure are adapted from [2]. (B) Schematic

illustrating dynamic population coding in a hypothetical population comprising neurons X, Y, and Z. Left: The timecourses for neurons X–Z. Right: The population response

can be depicted as a trajectory through multidimensional state space. The black path represents the combined activity of the three neurons across time. Timepoints t = 1,

t = 2, and t = 3 in the trajectory on the right correspond to activity at points t = 1, t = 2, and t = 3 (indicated by the broken lines) in the timecourses on the left.
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Box 2. Areas for future research

� A key feature of WM is the ability to maintain task-relevant

information in the face of task-irrelevant or distracting information

[27,85]. A complete understanding of how WM is implemented in

the brain will require new insights into how sustained representa-

tions in sensory cortex are affected by incoming sensory input.

One study observed that visual WM recruits populations with

spatial receptive fields that are distinct from the receptive fields of

the neurons activated by the sample item [86]. Although the

authors did not examine interference from irrelevant information,

some form of global recruitment could potentially prevent

distracting items presented in the same spatial location as the

sample item from corrupting the WM representation.

� With the studies we review here, we argue that WM relies in part on

encoding that is temporally dynamic and spatially distributed. One

proposal is that temporal and spatial coordination arises through

brain oscillations [87–89]. Direct intracranial recordings in human

epilepsy patients [90] and the use of subdural electrode arrays to

directly record neural activity across broad regions of cortex in

monkeys [91] offer an opportunity to describe the properties of

these oscillations in the context of WM [92], simultaneously

marrying temporal precision and spatial coverage. These techni-

ques can provide greater insight into regional specificity and

interregional integration that are critical for elucidating the neural

basis of WM. Additionally, these techniques can facilitate more

direct comparisons across monkey and human studies.

� A logical extension of the notion of distributed coding within a

region is the idea that brain function arises from large-scale

network coordination [93]. There is evidence to suggest that WM

relies on such large-scale interregional communication. Visual

WM involves top-down signals from the lPFC to parietal cortex

[53,94] as well as communication from frontoparietal regions to

visual cortex [95]. Additionally, interactions between basal ganglia

and the lPFC are thought to mediate the filtering of task-irrelevant

information and the updating of task-relevant information in WM

[96]. Future work must integrate knowledge about the neural

computations performed by these individual regions in the

service of WM with an understanding of the functions resulting

from interactions between these regions to build a complete

picture of WM.
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responses to task-relevant sample stimuli [60]. Another
group used concurrent TMS–fMRI [61] to modulate lPFC
activity during the delay period of a WM task [62]. They
observed enhanced processing in visual cortex of task-
relevant information in the presence of distractors, further
confirming that lPFC input modulates visual selectivity
during WM maintenance.

Taken together, these studies provide direct evidence
that top-down lPFC signals modulate sensory activity
during WM and that lPFC feedback signals, whether
periodic or tonic, may enhance the selectivity of represen-
tations in sensory cortex throughout WM maintenance.
This idea is in line with results showing that consistent
communication between the lPFC and visual cortex across
stimulus encoding and maintenance is important for WM
[63]. It should be noted that although none of the TMS
studies described above drew specific links between top-
down lPFC input and persistent activity within the lPFC,
they all targeted subregions of the lPFC that typically
exhibit sustained activation during WM tasks. Further
work is required to explicitly test the relationship between
top-down lPFC signals and persistent activity.

Persistent neural activity revisited
Persistent neural activity, particularly in the lPFC, has
become synonymous with WM. However, this equivalence
is misleading. First, the lPFC does not appear to be pri-
vileged in its ability to generate persistent activity. Parti-
cularly when analyses focus on neurons or voxels that are
highly stimulus selective, persistent neural activity can be
observed nearly everywhere in the brain [8,64–66]. Second,
although persistent neural activity is a key mechanism for
forming temporal links between sensation and action [54]
in various contexts [67–69], there may be other mechan-
isms by which WM information is actively retained
(Figure 2A).

The evidence we have presented thus far underscores
the importance of population coding of WM information
[40]. As demonstrated in other domains, information can
be represented by dynamic spatiotemporal patterns among
populations of neurons [70,71]. That is, information
encoded in a given state – or set of activation levels across
the population – at time t may be encoded in an entirely
different state at time t + 1. Thus, a representation can be
sustained via a dynamic trajectory through state space
(where the space is defined by the activity of the neurons in
the population) [72] (Figure 2B). Surprisingly, this is not
antithetical to the notion of a stable representation; the-
oretical work suggests that in the case where redundant
coding of information is present, time-varying population
activation can encode a stable representation [73].

Empirical findings confirm that WM information can be
sustained through dynamic population coding: by examin-
ing data in short time steps across the delay period, studies
have found that the pattern of activation states encoding
WM information changes over the course of maintenance.
One study decoded electrophysiological data from monkey
lPFC during a WM task for object category and showed
that decoding was most successful when the decoding
algorithm was trained and tested on data from the same
point in the trial [38]. Training and testing from temporally
6

distal times resulted in chance-level decoding. The inabil-
ity to generalize decoding performance over time suggests
that the patterns of activity containing information about
the relevant category drifted over the course of the trial.
Other studies have documented similar temporally
dynamic population codes in monkey lPFC [37,39,74]
and one fMRI study recently demonstrated dynamic popu-
lation coding in visual cortex [24]. In contrast to the fixed-
selectivity model, therefore, WM representations may not
critically depend on the persistent activity of a fixed set of
selectively tuned neurons.

Although the precise neuronal mechanisms underlying
dynamic population coding remain undefined, recent com-
putational work suggests that information can be main-
tained through rapid short-term changes in synaptic
plasticity [75,76]. Thus, activity-dependent changes in
neural networks trace dynamic trajectories through state
space that reliably and efficiently encode task-related
variables [72,76]. Future studies must determine the func-
tional relevance of these mechanisms for the neurobiolo-
gical implementation of WM.

Concluding remarks
An understanding of the neural mechanisms underlying
WM is critical for gaining insight into the wide range of
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goal-directed behaviors supported by WM. In this review,
we present a perspective on WM that emphasizes the
notion of distributed population activity in encoding WM
information. Methodological advances in the past ten
years, and in the past few years in particular, have high-
lighted the sensory nature of sustained WM information in
sensory cortices and the high-dimensional nature of infor-
mation encoded by lPFC activity. Contrary to its imputed
role as a storage buffer, we suggest that lPFC activity
represents top-down influences on sensory regions. This
conceptualization of the lPFC echoes models of hippocam-
pal function that propose that the hippocampus stores
pointers that can reactivate cortical memory traces rather
than storing the memories themselves [77]. Future work
must prioritize further efforts to specify the role of the
lPFC in WM, as well as the functions that arise through
interactions between the lPFC, sensory regions, and other
regions involved in WM (Box 2). An emphasis on sustained
representations through multiple neural mechanisms will
facilitate the incorporation of these mechanisms into a
comprehensive theory of WM.
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